13a8617a8SJordan K. Hubbard /*
23a8617a8SJordan K. Hubbard * ====================================================
33a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
43a8617a8SJordan K. Hubbard *
53f708241SDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business.
63a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this
73a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice
83a8617a8SJordan K. Hubbard * is preserved.
93a8617a8SJordan K. Hubbard * ====================================================
103a8617a8SJordan K. Hubbard */
113a8617a8SJordan K. Hubbard
12*99843eb8SSteve Kargl /* j1(x), y1(x)
133a8617a8SJordan K. Hubbard * Bessel function of the first and second kinds of order zero.
143a8617a8SJordan K. Hubbard * Method -- j1(x):
153a8617a8SJordan K. Hubbard * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
163a8617a8SJordan K. Hubbard * 2. Reduce x to |x| since j1(x)=-j1(-x), and
173a8617a8SJordan K. Hubbard * for x in (0,2)
183a8617a8SJordan K. Hubbard * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
193a8617a8SJordan K. Hubbard * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
203a8617a8SJordan K. Hubbard * for x in (2,inf)
213a8617a8SJordan K. Hubbard * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
223a8617a8SJordan K. Hubbard * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
233a8617a8SJordan K. Hubbard * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
243a8617a8SJordan K. Hubbard * as follow:
253a8617a8SJordan K. Hubbard * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
263a8617a8SJordan K. Hubbard * = 1/sqrt(2) * (sin(x) - cos(x))
273a8617a8SJordan K. Hubbard * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
283a8617a8SJordan K. Hubbard * = -1/sqrt(2) * (sin(x) + cos(x))
293a8617a8SJordan K. Hubbard * (To avoid cancellation, use
303a8617a8SJordan K. Hubbard * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
313a8617a8SJordan K. Hubbard * to compute the worse one.)
323a8617a8SJordan K. Hubbard *
333a8617a8SJordan K. Hubbard * 3 Special cases
343a8617a8SJordan K. Hubbard * j1(nan)= nan
353a8617a8SJordan K. Hubbard * j1(0) = 0
363a8617a8SJordan K. Hubbard * j1(inf) = 0
373a8617a8SJordan K. Hubbard *
383a8617a8SJordan K. Hubbard * Method -- y1(x):
393a8617a8SJordan K. Hubbard * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
403a8617a8SJordan K. Hubbard * 2. For x<2.
413a8617a8SJordan K. Hubbard * Since
423a8617a8SJordan K. Hubbard * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
433a8617a8SJordan K. Hubbard * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
443a8617a8SJordan K. Hubbard * We use the following function to approximate y1,
453a8617a8SJordan K. Hubbard * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
463a8617a8SJordan K. Hubbard * where for x in [0,2] (abs err less than 2**-65.89)
473a8617a8SJordan K. Hubbard * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
483a8617a8SJordan K. Hubbard * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
493a8617a8SJordan K. Hubbard * Note: For tiny x, 1/x dominate y1 and hence
503a8617a8SJordan K. Hubbard * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
513a8617a8SJordan K. Hubbard * 3. For x>=2.
523a8617a8SJordan K. Hubbard * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
533a8617a8SJordan K. Hubbard * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
543a8617a8SJordan K. Hubbard * by method mentioned above.
553a8617a8SJordan K. Hubbard */
563a8617a8SJordan K. Hubbard
573a8617a8SJordan K. Hubbard #include "math.h"
583a8617a8SJordan K. Hubbard #include "math_private.h"
593a8617a8SJordan K. Hubbard
605b3a5f83SSteve Kargl static __inline double pone(double), qone(double);
613a8617a8SJordan K. Hubbard
62186f6207SSteve Kargl static const volatile double vone = 1, vzero = 0;
63186f6207SSteve Kargl
643a8617a8SJordan K. Hubbard static const double
653a8617a8SJordan K. Hubbard huge = 1e300,
663a8617a8SJordan K. Hubbard one = 1.0,
673a8617a8SJordan K. Hubbard invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
683a8617a8SJordan K. Hubbard tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
693a8617a8SJordan K. Hubbard /* R0/S0 on [0,2] */
703a8617a8SJordan K. Hubbard r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
713a8617a8SJordan K. Hubbard r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
723a8617a8SJordan K. Hubbard r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
733a8617a8SJordan K. Hubbard r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
743a8617a8SJordan K. Hubbard s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
753a8617a8SJordan K. Hubbard s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
763a8617a8SJordan K. Hubbard s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
773a8617a8SJordan K. Hubbard s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
783a8617a8SJordan K. Hubbard s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
793a8617a8SJordan K. Hubbard
803a8617a8SJordan K. Hubbard static const double zero = 0.0;
813a8617a8SJordan K. Hubbard
8259b19ff1SAlfred Perlstein double
j1(double x)83*99843eb8SSteve Kargl j1(double x)
843a8617a8SJordan K. Hubbard {
853a8617a8SJordan K. Hubbard double z, s,c,ss,cc,r,u,v,y;
863a8617a8SJordan K. Hubbard int32_t hx,ix;
873a8617a8SJordan K. Hubbard
883a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x);
893a8617a8SJordan K. Hubbard ix = hx&0x7fffffff;
903a8617a8SJordan K. Hubbard if(ix>=0x7ff00000) return one/x;
913a8617a8SJordan K. Hubbard y = fabs(x);
923a8617a8SJordan K. Hubbard if(ix >= 0x40000000) { /* |x| >= 2.0 */
93885bfcdaSPeter Jeremy sincos(y, &s, &c);
943a8617a8SJordan K. Hubbard ss = -s-c;
953a8617a8SJordan K. Hubbard cc = s-c;
963a8617a8SJordan K. Hubbard if(ix<0x7fe00000) { /* make sure y+y not overflow */
973a8617a8SJordan K. Hubbard z = cos(y+y);
983a8617a8SJordan K. Hubbard if ((s*c)>zero) cc = z/ss;
993a8617a8SJordan K. Hubbard else ss = z/cc;
1003a8617a8SJordan K. Hubbard }
1013a8617a8SJordan K. Hubbard /*
1023a8617a8SJordan K. Hubbard * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
1033a8617a8SJordan K. Hubbard * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
1043a8617a8SJordan K. Hubbard */
1053a8617a8SJordan K. Hubbard if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y);
1063a8617a8SJordan K. Hubbard else {
1073a8617a8SJordan K. Hubbard u = pone(y); v = qone(y);
1083a8617a8SJordan K. Hubbard z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
1093a8617a8SJordan K. Hubbard }
1103a8617a8SJordan K. Hubbard if(hx<0) return -z;
1113a8617a8SJordan K. Hubbard else return z;
1123a8617a8SJordan K. Hubbard }
1133a8617a8SJordan K. Hubbard if(ix<0x3e400000) { /* |x|<2**-27 */
1143a8617a8SJordan K. Hubbard if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
1153a8617a8SJordan K. Hubbard }
1163a8617a8SJordan K. Hubbard z = x*x;
1173a8617a8SJordan K. Hubbard r = z*(r00+z*(r01+z*(r02+z*r03)));
1183a8617a8SJordan K. Hubbard s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
1193a8617a8SJordan K. Hubbard r *= x;
1203a8617a8SJordan K. Hubbard return(x*0.5+r/s);
1213a8617a8SJordan K. Hubbard }
1223a8617a8SJordan K. Hubbard
1233a8617a8SJordan K. Hubbard static const double U0[5] = {
1243a8617a8SJordan K. Hubbard -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
1253a8617a8SJordan K. Hubbard 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
1263a8617a8SJordan K. Hubbard -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
1273a8617a8SJordan K. Hubbard 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
1283a8617a8SJordan K. Hubbard -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
1293a8617a8SJordan K. Hubbard };
1303a8617a8SJordan K. Hubbard static const double V0[5] = {
1313a8617a8SJordan K. Hubbard 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
1323a8617a8SJordan K. Hubbard 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
1333a8617a8SJordan K. Hubbard 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
1343a8617a8SJordan K. Hubbard 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
1353a8617a8SJordan K. Hubbard 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
1363a8617a8SJordan K. Hubbard };
1373a8617a8SJordan K. Hubbard
13859b19ff1SAlfred Perlstein double
y1(double x)139*99843eb8SSteve Kargl y1(double x)
1403a8617a8SJordan K. Hubbard {
1413a8617a8SJordan K. Hubbard double z, s,c,ss,cc,u,v;
1423a8617a8SJordan K. Hubbard int32_t hx,ix,lx;
1433a8617a8SJordan K. Hubbard
1443a8617a8SJordan K. Hubbard EXTRACT_WORDS(hx,lx,x);
1453a8617a8SJordan K. Hubbard ix = 0x7fffffff&hx;
146186f6207SSteve Kargl /*
147186f6207SSteve Kargl * y1(NaN) = NaN.
148186f6207SSteve Kargl * y1(Inf) = 0.
149186f6207SSteve Kargl * y1(-Inf) = NaN and raise invalid exception.
150186f6207SSteve Kargl */
151186f6207SSteve Kargl if(ix>=0x7ff00000) return vone/(x+x*x);
152186f6207SSteve Kargl /* y1(+-0) = -inf and raise divide-by-zero exception. */
153186f6207SSteve Kargl if((ix|lx)==0) return -one/vzero;
154186f6207SSteve Kargl /* y1(x<0) = NaN and raise invalid exception. */
155186f6207SSteve Kargl if(hx<0) return vzero/vzero;
1563a8617a8SJordan K. Hubbard if(ix >= 0x40000000) { /* |x| >= 2.0 */
157885bfcdaSPeter Jeremy sincos(x, &s, &c);
1583a8617a8SJordan K. Hubbard ss = -s-c;
1593a8617a8SJordan K. Hubbard cc = s-c;
1603a8617a8SJordan K. Hubbard if(ix<0x7fe00000) { /* make sure x+x not overflow */
1613a8617a8SJordan K. Hubbard z = cos(x+x);
1623a8617a8SJordan K. Hubbard if ((s*c)>zero) cc = z/ss;
1633a8617a8SJordan K. Hubbard else ss = z/cc;
1643a8617a8SJordan K. Hubbard }
1653a8617a8SJordan K. Hubbard /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
1663a8617a8SJordan K. Hubbard * where x0 = x-3pi/4
1673a8617a8SJordan K. Hubbard * Better formula:
1683a8617a8SJordan K. Hubbard * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
1693a8617a8SJordan K. Hubbard * = 1/sqrt(2) * (sin(x) - cos(x))
1703a8617a8SJordan K. Hubbard * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
1713a8617a8SJordan K. Hubbard * = -1/sqrt(2) * (cos(x) + sin(x))
1723a8617a8SJordan K. Hubbard * To avoid cancellation, use
1733a8617a8SJordan K. Hubbard * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
1743a8617a8SJordan K. Hubbard * to compute the worse one.
1753a8617a8SJordan K. Hubbard */
1763a8617a8SJordan K. Hubbard if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
1773a8617a8SJordan K. Hubbard else {
1783a8617a8SJordan K. Hubbard u = pone(x); v = qone(x);
1793a8617a8SJordan K. Hubbard z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
1803a8617a8SJordan K. Hubbard }
1813a8617a8SJordan K. Hubbard return z;
1823a8617a8SJordan K. Hubbard }
1833a8617a8SJordan K. Hubbard if(ix<=0x3c900000) { /* x < 2**-54 */
1843a8617a8SJordan K. Hubbard return(-tpi/x);
1853a8617a8SJordan K. Hubbard }
1863a8617a8SJordan K. Hubbard z = x*x;
1873a8617a8SJordan K. Hubbard u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
1883a8617a8SJordan K. Hubbard v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
189*99843eb8SSteve Kargl return(x*(u/v) + tpi*(j1(x)*log(x)-one/x));
1903a8617a8SJordan K. Hubbard }
1913a8617a8SJordan K. Hubbard
1923a8617a8SJordan K. Hubbard /* For x >= 8, the asymptotic expansions of pone is
1933a8617a8SJordan K. Hubbard * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
1943a8617a8SJordan K. Hubbard * We approximate pone by
1953a8617a8SJordan K. Hubbard * pone(x) = 1 + (R/S)
1963a8617a8SJordan K. Hubbard * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
1973a8617a8SJordan K. Hubbard * S = 1 + ps0*s^2 + ... + ps4*s^10
1983a8617a8SJordan K. Hubbard * and
1993a8617a8SJordan K. Hubbard * | pone(x)-1-R/S | <= 2 ** ( -60.06)
2003a8617a8SJordan K. Hubbard */
2013a8617a8SJordan K. Hubbard
2023a8617a8SJordan K. Hubbard static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
2033a8617a8SJordan K. Hubbard 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
2043a8617a8SJordan K. Hubbard 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
2053a8617a8SJordan K. Hubbard 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
2063a8617a8SJordan K. Hubbard 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
2073a8617a8SJordan K. Hubbard 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
2083a8617a8SJordan K. Hubbard 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
2093a8617a8SJordan K. Hubbard };
2103a8617a8SJordan K. Hubbard static const double ps8[5] = {
2113a8617a8SJordan K. Hubbard 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
2123a8617a8SJordan K. Hubbard 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
2133a8617a8SJordan K. Hubbard 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
2143a8617a8SJordan K. Hubbard 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
2153a8617a8SJordan K. Hubbard 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
2163a8617a8SJordan K. Hubbard };
2173a8617a8SJordan K. Hubbard
2183a8617a8SJordan K. Hubbard static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
2193a8617a8SJordan K. Hubbard 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
2203a8617a8SJordan K. Hubbard 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
2213a8617a8SJordan K. Hubbard 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
2223a8617a8SJordan K. Hubbard 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
2233a8617a8SJordan K. Hubbard 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
2243a8617a8SJordan K. Hubbard 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
2253a8617a8SJordan K. Hubbard };
2263a8617a8SJordan K. Hubbard static const double ps5[5] = {
2273a8617a8SJordan K. Hubbard 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
2283a8617a8SJordan K. Hubbard 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
2293a8617a8SJordan K. Hubbard 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
2303a8617a8SJordan K. Hubbard 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
2313a8617a8SJordan K. Hubbard 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
2323a8617a8SJordan K. Hubbard };
2333a8617a8SJordan K. Hubbard
2343a8617a8SJordan K. Hubbard static const double pr3[6] = {
2353a8617a8SJordan K. Hubbard 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
2363a8617a8SJordan K. Hubbard 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
2373a8617a8SJordan K. Hubbard 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
2383a8617a8SJordan K. Hubbard 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
2393a8617a8SJordan K. Hubbard 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
2403a8617a8SJordan K. Hubbard 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
2413a8617a8SJordan K. Hubbard };
2423a8617a8SJordan K. Hubbard static const double ps3[5] = {
2433a8617a8SJordan K. Hubbard 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
2443a8617a8SJordan K. Hubbard 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
2453a8617a8SJordan K. Hubbard 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
2463a8617a8SJordan K. Hubbard 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
2473a8617a8SJordan K. Hubbard 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
2483a8617a8SJordan K. Hubbard };
2493a8617a8SJordan K. Hubbard
2503a8617a8SJordan K. Hubbard static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
2513a8617a8SJordan K. Hubbard 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
2523a8617a8SJordan K. Hubbard 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
2533a8617a8SJordan K. Hubbard 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
2543a8617a8SJordan K. Hubbard 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
2553a8617a8SJordan K. Hubbard 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
2563a8617a8SJordan K. Hubbard 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
2573a8617a8SJordan K. Hubbard };
2583a8617a8SJordan K. Hubbard static const double ps2[5] = {
2593a8617a8SJordan K. Hubbard 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
2603a8617a8SJordan K. Hubbard 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
2613a8617a8SJordan K. Hubbard 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
2623a8617a8SJordan K. Hubbard 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
2633a8617a8SJordan K. Hubbard 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
2643a8617a8SJordan K. Hubbard };
2653a8617a8SJordan K. Hubbard
266a737ef56SSteve Kargl static __inline double
pone(double x)267a737ef56SSteve Kargl pone(double x)
2683a8617a8SJordan K. Hubbard {
2693a8617a8SJordan K. Hubbard const double *p,*q;
2703a8617a8SJordan K. Hubbard double z,r,s;
2713a8617a8SJordan K. Hubbard int32_t ix;
2723a8617a8SJordan K. Hubbard GET_HIGH_WORD(ix,x);
2733a8617a8SJordan K. Hubbard ix &= 0x7fffffff;
2743a8617a8SJordan K. Hubbard if(ix>=0x40200000) {p = pr8; q= ps8;}
2753a8617a8SJordan K. Hubbard else if(ix>=0x40122E8B){p = pr5; q= ps5;}
2763a8617a8SJordan K. Hubbard else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
2778617260aSPedro F. Giffuni else {p = pr2; q= ps2;} /* ix>=0x40000000 */
2783a8617a8SJordan K. Hubbard z = one/(x*x);
2793a8617a8SJordan K. Hubbard r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
2803a8617a8SJordan K. Hubbard s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
2813a8617a8SJordan K. Hubbard return one+ r/s;
2823a8617a8SJordan K. Hubbard }
2833a8617a8SJordan K. Hubbard
2843a8617a8SJordan K. Hubbard
2853a8617a8SJordan K. Hubbard /* For x >= 8, the asymptotic expansions of qone is
2863a8617a8SJordan K. Hubbard * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
2873a8617a8SJordan K. Hubbard * We approximate pone by
2883a8617a8SJordan K. Hubbard * qone(x) = s*(0.375 + (R/S))
2893a8617a8SJordan K. Hubbard * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
2903a8617a8SJordan K. Hubbard * S = 1 + qs1*s^2 + ... + qs6*s^12
2913a8617a8SJordan K. Hubbard * and
2923a8617a8SJordan K. Hubbard * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
2933a8617a8SJordan K. Hubbard */
2943a8617a8SJordan K. Hubbard
2953a8617a8SJordan K. Hubbard static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
2963a8617a8SJordan K. Hubbard 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
2973a8617a8SJordan K. Hubbard -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
2983a8617a8SJordan K. Hubbard -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
2993a8617a8SJordan K. Hubbard -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
3003a8617a8SJordan K. Hubbard -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
3013a8617a8SJordan K. Hubbard -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
3023a8617a8SJordan K. Hubbard };
3033a8617a8SJordan K. Hubbard static const double qs8[6] = {
3043a8617a8SJordan K. Hubbard 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
3053a8617a8SJordan K. Hubbard 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
3063a8617a8SJordan K. Hubbard 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
3073a8617a8SJordan K. Hubbard 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
3083a8617a8SJordan K. Hubbard 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
3093a8617a8SJordan K. Hubbard -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
3103a8617a8SJordan K. Hubbard };
3113a8617a8SJordan K. Hubbard
3123a8617a8SJordan K. Hubbard static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
3133a8617a8SJordan K. Hubbard -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
3143a8617a8SJordan K. Hubbard -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
3153a8617a8SJordan K. Hubbard -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
3163a8617a8SJordan K. Hubbard -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
3173a8617a8SJordan K. Hubbard -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
3183a8617a8SJordan K. Hubbard -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
3193a8617a8SJordan K. Hubbard };
3203a8617a8SJordan K. Hubbard static const double qs5[6] = {
3213a8617a8SJordan K. Hubbard 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
3223a8617a8SJordan K. Hubbard 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
3233a8617a8SJordan K. Hubbard 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
3243a8617a8SJordan K. Hubbard 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
3253a8617a8SJordan K. Hubbard 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
3263a8617a8SJordan K. Hubbard -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
3273a8617a8SJordan K. Hubbard };
3283a8617a8SJordan K. Hubbard
3293a8617a8SJordan K. Hubbard static const double qr3[6] = {
3303a8617a8SJordan K. Hubbard -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
3313a8617a8SJordan K. Hubbard -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
3323a8617a8SJordan K. Hubbard -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
3333a8617a8SJordan K. Hubbard -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
3343a8617a8SJordan K. Hubbard -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
3353a8617a8SJordan K. Hubbard -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
3363a8617a8SJordan K. Hubbard };
3373a8617a8SJordan K. Hubbard static const double qs3[6] = {
3383a8617a8SJordan K. Hubbard 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
3393a8617a8SJordan K. Hubbard 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
3403a8617a8SJordan K. Hubbard 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
3413a8617a8SJordan K. Hubbard 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
3423a8617a8SJordan K. Hubbard 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
3433a8617a8SJordan K. Hubbard -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
3443a8617a8SJordan K. Hubbard };
3453a8617a8SJordan K. Hubbard
3463a8617a8SJordan K. Hubbard static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
3473a8617a8SJordan K. Hubbard -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
3483a8617a8SJordan K. Hubbard -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
3493a8617a8SJordan K. Hubbard -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
3503a8617a8SJordan K. Hubbard -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
3513a8617a8SJordan K. Hubbard -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
3523a8617a8SJordan K. Hubbard -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
3533a8617a8SJordan K. Hubbard };
3543a8617a8SJordan K. Hubbard static const double qs2[6] = {
3553a8617a8SJordan K. Hubbard 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
3563a8617a8SJordan K. Hubbard 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
3573a8617a8SJordan K. Hubbard 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
3583a8617a8SJordan K. Hubbard 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
3593a8617a8SJordan K. Hubbard 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
3603a8617a8SJordan K. Hubbard -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
3613a8617a8SJordan K. Hubbard };
3623a8617a8SJordan K. Hubbard
363a737ef56SSteve Kargl static __inline double
qone(double x)364a737ef56SSteve Kargl qone(double x)
3653a8617a8SJordan K. Hubbard {
3663a8617a8SJordan K. Hubbard const double *p,*q;
3673a8617a8SJordan K. Hubbard double s,r,z;
3683a8617a8SJordan K. Hubbard int32_t ix;
3693a8617a8SJordan K. Hubbard GET_HIGH_WORD(ix,x);
3703a8617a8SJordan K. Hubbard ix &= 0x7fffffff;
3713a8617a8SJordan K. Hubbard if(ix>=0x40200000) {p = qr8; q= qs8;}
3723a8617a8SJordan K. Hubbard else if(ix>=0x40122E8B){p = qr5; q= qs5;}
3733a8617a8SJordan K. Hubbard else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
374d300dc23SPedro F. Giffuni else {p = qr2; q= qs2;} /* ix>=0x40000000 */
3753a8617a8SJordan K. Hubbard z = one/(x*x);
3763a8617a8SJordan K. Hubbard r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
3773a8617a8SJordan K. Hubbard s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
3783a8617a8SJordan K. Hubbard return (.375 + r/s)/x;
3793a8617a8SJordan K. Hubbard }
380