13a8617a8SJordan K. Hubbard /*
23a8617a8SJordan K. Hubbard * ====================================================
33a8617a8SJordan K. Hubbard * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
43a8617a8SJordan K. Hubbard *
53f708241SDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business.
63a8617a8SJordan K. Hubbard * Permission to use, copy, modify, and distribute this
73a8617a8SJordan K. Hubbard * software is freely granted, provided that this notice
83a8617a8SJordan K. Hubbard * is preserved.
93a8617a8SJordan K. Hubbard * ====================================================
103a8617a8SJordan K. Hubbard */
113a8617a8SJordan K. Hubbard
12*99843eb8SSteve Kargl /* j0(x), y0(x)
133a8617a8SJordan K. Hubbard * Bessel function of the first and second kinds of order zero.
143a8617a8SJordan K. Hubbard * Method -- j0(x):
153a8617a8SJordan K. Hubbard * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
163a8617a8SJordan K. Hubbard * 2. Reduce x to |x| since j0(x)=j0(-x), and
173a8617a8SJordan K. Hubbard * for x in (0,2)
183a8617a8SJordan K. Hubbard * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
193a8617a8SJordan K. Hubbard * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
203a8617a8SJordan K. Hubbard * for x in (2,inf)
213a8617a8SJordan K. Hubbard * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
223a8617a8SJordan K. Hubbard * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
233a8617a8SJordan K. Hubbard * as follow:
243a8617a8SJordan K. Hubbard * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
253a8617a8SJordan K. Hubbard * = 1/sqrt(2) * (cos(x) + sin(x))
263a8617a8SJordan K. Hubbard * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
273a8617a8SJordan K. Hubbard * = 1/sqrt(2) * (sin(x) - cos(x))
283a8617a8SJordan K. Hubbard * (To avoid cancellation, use
293a8617a8SJordan K. Hubbard * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
303a8617a8SJordan K. Hubbard * to compute the worse one.)
313a8617a8SJordan K. Hubbard *
323a8617a8SJordan K. Hubbard * 3 Special cases
333a8617a8SJordan K. Hubbard * j0(nan)= nan
343a8617a8SJordan K. Hubbard * j0(0) = 1
353a8617a8SJordan K. Hubbard * j0(inf) = 0
363a8617a8SJordan K. Hubbard *
373a8617a8SJordan K. Hubbard * Method -- y0(x):
383a8617a8SJordan K. Hubbard * 1. For x<2.
393a8617a8SJordan K. Hubbard * Since
403a8617a8SJordan K. Hubbard * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
413a8617a8SJordan K. Hubbard * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
423a8617a8SJordan K. Hubbard * We use the following function to approximate y0,
433a8617a8SJordan K. Hubbard * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
443a8617a8SJordan K. Hubbard * where
453a8617a8SJordan K. Hubbard * U(z) = u00 + u01*z + ... + u06*z^6
463a8617a8SJordan K. Hubbard * V(z) = 1 + v01*z + ... + v04*z^4
473a8617a8SJordan K. Hubbard * with absolute approximation error bounded by 2**-72.
483a8617a8SJordan K. Hubbard * Note: For tiny x, U/V = u0 and j0(x)~1, hence
493a8617a8SJordan K. Hubbard * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
503a8617a8SJordan K. Hubbard * 2. For x>=2.
513a8617a8SJordan K. Hubbard * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
523a8617a8SJordan K. Hubbard * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
533a8617a8SJordan K. Hubbard * by the method mentioned above.
543a8617a8SJordan K. Hubbard * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
553a8617a8SJordan K. Hubbard */
563a8617a8SJordan K. Hubbard
573a8617a8SJordan K. Hubbard #include "math.h"
583a8617a8SJordan K. Hubbard #include "math_private.h"
593a8617a8SJordan K. Hubbard
605b3a5f83SSteve Kargl static __inline double pzero(double), qzero(double);
613a8617a8SJordan K. Hubbard
62186f6207SSteve Kargl static const volatile double vone = 1, vzero = 0;
63186f6207SSteve Kargl
643a8617a8SJordan K. Hubbard static const double
653a8617a8SJordan K. Hubbard huge = 1e300,
663a8617a8SJordan K. Hubbard one = 1.0,
673a8617a8SJordan K. Hubbard invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
683a8617a8SJordan K. Hubbard tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
693a8617a8SJordan K. Hubbard /* R0/S0 on [0, 2.00] */
703a8617a8SJordan K. Hubbard R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
713a8617a8SJordan K. Hubbard R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
723a8617a8SJordan K. Hubbard R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
733a8617a8SJordan K. Hubbard R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
743a8617a8SJordan K. Hubbard S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
753a8617a8SJordan K. Hubbard S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
763a8617a8SJordan K. Hubbard S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
773a8617a8SJordan K. Hubbard S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
783a8617a8SJordan K. Hubbard
7976c528d3SPedro F. Giffuni static const double zero = 0, qrtr = 0.25;
803a8617a8SJordan K. Hubbard
8159b19ff1SAlfred Perlstein double
j0(double x)82*99843eb8SSteve Kargl j0(double x)
833a8617a8SJordan K. Hubbard {
843a8617a8SJordan K. Hubbard double z, s,c,ss,cc,r,u,v;
853a8617a8SJordan K. Hubbard int32_t hx,ix;
863a8617a8SJordan K. Hubbard
873a8617a8SJordan K. Hubbard GET_HIGH_WORD(hx,x);
883a8617a8SJordan K. Hubbard ix = hx&0x7fffffff;
893a8617a8SJordan K. Hubbard if(ix>=0x7ff00000) return one/(x*x);
903a8617a8SJordan K. Hubbard x = fabs(x);
913a8617a8SJordan K. Hubbard if(ix >= 0x40000000) { /* |x| >= 2.0 */
92885bfcdaSPeter Jeremy sincos(x, &s, &c);
933a8617a8SJordan K. Hubbard ss = s-c;
943a8617a8SJordan K. Hubbard cc = s+c;
9576c528d3SPedro F. Giffuni if(ix<0x7fe00000) { /* Make sure x+x does not overflow. */
963a8617a8SJordan K. Hubbard z = -cos(x+x);
973a8617a8SJordan K. Hubbard if ((s*c)<zero) cc = z/ss;
983a8617a8SJordan K. Hubbard else ss = z/cc;
993a8617a8SJordan K. Hubbard }
1003a8617a8SJordan K. Hubbard /*
1013a8617a8SJordan K. Hubbard * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
1023a8617a8SJordan K. Hubbard * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
1033a8617a8SJordan K. Hubbard */
1043a8617a8SJordan K. Hubbard if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x);
1053a8617a8SJordan K. Hubbard else {
1063a8617a8SJordan K. Hubbard u = pzero(x); v = qzero(x);
1073a8617a8SJordan K. Hubbard z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
1083a8617a8SJordan K. Hubbard }
1093a8617a8SJordan K. Hubbard return z;
1103a8617a8SJordan K. Hubbard }
1113a8617a8SJordan K. Hubbard if(ix<0x3f200000) { /* |x| < 2**-13 */
1123a8617a8SJordan K. Hubbard if(huge+x>one) { /* raise inexact if x != 0 */
1133a8617a8SJordan K. Hubbard if(ix<0x3e400000) return one; /* |x|<2**-27 */
1142656e946SSteve Kargl else return one - x*x/4;
1153a8617a8SJordan K. Hubbard }
1163a8617a8SJordan K. Hubbard }
1173a8617a8SJordan K. Hubbard z = x*x;
1183a8617a8SJordan K. Hubbard r = z*(R02+z*(R03+z*(R04+z*R05)));
1193a8617a8SJordan K. Hubbard s = one+z*(S01+z*(S02+z*(S03+z*S04)));
1203a8617a8SJordan K. Hubbard if(ix < 0x3FF00000) { /* |x| < 1.00 */
12176c528d3SPedro F. Giffuni return one + z*((r/s)-qrtr);
1223a8617a8SJordan K. Hubbard } else {
12376c528d3SPedro F. Giffuni u = x/2;
1243a8617a8SJordan K. Hubbard return((one+u)*(one-u)+z*(r/s));
1253a8617a8SJordan K. Hubbard }
1263a8617a8SJordan K. Hubbard }
1273a8617a8SJordan K. Hubbard
1283a8617a8SJordan K. Hubbard static const double
1293a8617a8SJordan K. Hubbard u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
1303a8617a8SJordan K. Hubbard u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
1313a8617a8SJordan K. Hubbard u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
1323a8617a8SJordan K. Hubbard u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
1333a8617a8SJordan K. Hubbard u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
1343a8617a8SJordan K. Hubbard u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
1353a8617a8SJordan K. Hubbard u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
1363a8617a8SJordan K. Hubbard v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
1373a8617a8SJordan K. Hubbard v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
1383a8617a8SJordan K. Hubbard v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
1393a8617a8SJordan K. Hubbard v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
1403a8617a8SJordan K. Hubbard
14159b19ff1SAlfred Perlstein double
y0(double x)142*99843eb8SSteve Kargl y0(double x)
1433a8617a8SJordan K. Hubbard {
1443a8617a8SJordan K. Hubbard double z, s,c,ss,cc,u,v;
1453a8617a8SJordan K. Hubbard int32_t hx,ix,lx;
1463a8617a8SJordan K. Hubbard
1473a8617a8SJordan K. Hubbard EXTRACT_WORDS(hx,lx,x);
1483a8617a8SJordan K. Hubbard ix = 0x7fffffff&hx;
149186f6207SSteve Kargl /*
150186f6207SSteve Kargl * y0(NaN) = NaN.
151186f6207SSteve Kargl * y0(Inf) = 0.
152186f6207SSteve Kargl * y0(-Inf) = NaN and raise invalid exception.
153186f6207SSteve Kargl */
154186f6207SSteve Kargl if(ix>=0x7ff00000) return vone/(x+x*x);
155186f6207SSteve Kargl /* y0(+-0) = -inf and raise divide-by-zero exception. */
156186f6207SSteve Kargl if((ix|lx)==0) return -one/vzero;
157186f6207SSteve Kargl /* y0(x<0) = NaN and raise invalid exception. */
158186f6207SSteve Kargl if(hx<0) return vzero/vzero;
1593a8617a8SJordan K. Hubbard if(ix >= 0x40000000) { /* |x| >= 2.0 */
1603a8617a8SJordan K. Hubbard /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
1613a8617a8SJordan K. Hubbard * where x0 = x-pi/4
1623a8617a8SJordan K. Hubbard * Better formula:
1633a8617a8SJordan K. Hubbard * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
1643a8617a8SJordan K. Hubbard * = 1/sqrt(2) * (sin(x) + cos(x))
1653a8617a8SJordan K. Hubbard * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
1663a8617a8SJordan K. Hubbard * = 1/sqrt(2) * (sin(x) - cos(x))
1673a8617a8SJordan K. Hubbard * To avoid cancellation, use
1683a8617a8SJordan K. Hubbard * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
1693a8617a8SJordan K. Hubbard * to compute the worse one.
1703a8617a8SJordan K. Hubbard */
171885bfcdaSPeter Jeremy sincos(x, &s, &c);
1723a8617a8SJordan K. Hubbard ss = s-c;
1733a8617a8SJordan K. Hubbard cc = s+c;
1743a8617a8SJordan K. Hubbard /*
1753a8617a8SJordan K. Hubbard * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
1763a8617a8SJordan K. Hubbard * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
1773a8617a8SJordan K. Hubbard */
1783a8617a8SJordan K. Hubbard if(ix<0x7fe00000) { /* make sure x+x not overflow */
1793a8617a8SJordan K. Hubbard z = -cos(x+x);
1803a8617a8SJordan K. Hubbard if ((s*c)<zero) cc = z/ss;
1813a8617a8SJordan K. Hubbard else ss = z/cc;
1823a8617a8SJordan K. Hubbard }
1833a8617a8SJordan K. Hubbard if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x);
1843a8617a8SJordan K. Hubbard else {
1853a8617a8SJordan K. Hubbard u = pzero(x); v = qzero(x);
1863a8617a8SJordan K. Hubbard z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
1873a8617a8SJordan K. Hubbard }
1883a8617a8SJordan K. Hubbard return z;
1893a8617a8SJordan K. Hubbard }
1903a8617a8SJordan K. Hubbard if(ix<=0x3e400000) { /* x < 2**-27 */
191*99843eb8SSteve Kargl return(u00 + tpi*log(x));
1923a8617a8SJordan K. Hubbard }
1933a8617a8SJordan K. Hubbard z = x*x;
1943a8617a8SJordan K. Hubbard u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
1953a8617a8SJordan K. Hubbard v = one+z*(v01+z*(v02+z*(v03+z*v04)));
196*99843eb8SSteve Kargl return(u/v + tpi*(j0(x)*log(x)));
1973a8617a8SJordan K. Hubbard }
1983a8617a8SJordan K. Hubbard
1993a8617a8SJordan K. Hubbard /* The asymptotic expansions of pzero is
2003a8617a8SJordan K. Hubbard * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
2013a8617a8SJordan K. Hubbard * For x >= 2, We approximate pzero by
2023a8617a8SJordan K. Hubbard * pzero(x) = 1 + (R/S)
2033a8617a8SJordan K. Hubbard * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
2043a8617a8SJordan K. Hubbard * S = 1 + pS0*s^2 + ... + pS4*s^10
2053a8617a8SJordan K. Hubbard * and
2063a8617a8SJordan K. Hubbard * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
2073a8617a8SJordan K. Hubbard */
2083a8617a8SJordan K. Hubbard static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
2093a8617a8SJordan K. Hubbard 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
2103a8617a8SJordan K. Hubbard -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
2113a8617a8SJordan K. Hubbard -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
2123a8617a8SJordan K. Hubbard -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
2133a8617a8SJordan K. Hubbard -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
2143a8617a8SJordan K. Hubbard -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
2153a8617a8SJordan K. Hubbard };
2163a8617a8SJordan K. Hubbard static const double pS8[5] = {
2173a8617a8SJordan K. Hubbard 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
2183a8617a8SJordan K. Hubbard 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
2193a8617a8SJordan K. Hubbard 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
2203a8617a8SJordan K. Hubbard 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
2213a8617a8SJordan K. Hubbard 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
2223a8617a8SJordan K. Hubbard };
2233a8617a8SJordan K. Hubbard
2243a8617a8SJordan K. Hubbard static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
2253a8617a8SJordan K. Hubbard -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
2263a8617a8SJordan K. Hubbard -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
2273a8617a8SJordan K. Hubbard -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
2283a8617a8SJordan K. Hubbard -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
2293a8617a8SJordan K. Hubbard -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
2303a8617a8SJordan K. Hubbard -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
2313a8617a8SJordan K. Hubbard };
2323a8617a8SJordan K. Hubbard static const double pS5[5] = {
2333a8617a8SJordan K. Hubbard 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
2343a8617a8SJordan K. Hubbard 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
2353a8617a8SJordan K. Hubbard 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
2363a8617a8SJordan K. Hubbard 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
2373a8617a8SJordan K. Hubbard 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
2383a8617a8SJordan K. Hubbard };
2393a8617a8SJordan K. Hubbard
2403a8617a8SJordan K. Hubbard static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
2413a8617a8SJordan K. Hubbard -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
2423a8617a8SJordan K. Hubbard -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
2433a8617a8SJordan K. Hubbard -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
2443a8617a8SJordan K. Hubbard -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
2453a8617a8SJordan K. Hubbard -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
2463a8617a8SJordan K. Hubbard -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
2473a8617a8SJordan K. Hubbard };
2483a8617a8SJordan K. Hubbard static const double pS3[5] = {
2493a8617a8SJordan K. Hubbard 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
2503a8617a8SJordan K. Hubbard 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
2513a8617a8SJordan K. Hubbard 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
2523a8617a8SJordan K. Hubbard 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
2533a8617a8SJordan K. Hubbard 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
2543a8617a8SJordan K. Hubbard };
2553a8617a8SJordan K. Hubbard
2563a8617a8SJordan K. Hubbard static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
2573a8617a8SJordan K. Hubbard -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
2583a8617a8SJordan K. Hubbard -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
2593a8617a8SJordan K. Hubbard -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
2603a8617a8SJordan K. Hubbard -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
2613a8617a8SJordan K. Hubbard -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
2623a8617a8SJordan K. Hubbard -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
2633a8617a8SJordan K. Hubbard };
2643a8617a8SJordan K. Hubbard static const double pS2[5] = {
2653a8617a8SJordan K. Hubbard 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
2663a8617a8SJordan K. Hubbard 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
2673a8617a8SJordan K. Hubbard 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
2683a8617a8SJordan K. Hubbard 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
2693a8617a8SJordan K. Hubbard 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
2703a8617a8SJordan K. Hubbard };
2713a8617a8SJordan K. Hubbard
272a737ef56SSteve Kargl static __inline double
pzero(double x)273a737ef56SSteve Kargl pzero(double x)
2743a8617a8SJordan K. Hubbard {
2753a8617a8SJordan K. Hubbard const double *p,*q;
2763a8617a8SJordan K. Hubbard double z,r,s;
2773a8617a8SJordan K. Hubbard int32_t ix;
2783a8617a8SJordan K. Hubbard GET_HIGH_WORD(ix,x);
2793a8617a8SJordan K. Hubbard ix &= 0x7fffffff;
2803a8617a8SJordan K. Hubbard if(ix>=0x40200000) {p = pR8; q= pS8;}
2813a8617a8SJordan K. Hubbard else if(ix>=0x40122E8B){p = pR5; q= pS5;}
2823a8617a8SJordan K. Hubbard else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
2838617260aSPedro F. Giffuni else {p = pR2; q= pS2;} /* ix>=0x40000000 */
2843a8617a8SJordan K. Hubbard z = one/(x*x);
2853a8617a8SJordan K. Hubbard r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
2863a8617a8SJordan K. Hubbard s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
2873a8617a8SJordan K. Hubbard return one+ r/s;
2883a8617a8SJordan K. Hubbard }
2893a8617a8SJordan K. Hubbard
2903a8617a8SJordan K. Hubbard
2913a8617a8SJordan K. Hubbard /* For x >= 8, the asymptotic expansions of qzero is
2923a8617a8SJordan K. Hubbard * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
2933a8617a8SJordan K. Hubbard * We approximate pzero by
2943a8617a8SJordan K. Hubbard * qzero(x) = s*(-1.25 + (R/S))
2953a8617a8SJordan K. Hubbard * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
2963a8617a8SJordan K. Hubbard * S = 1 + qS0*s^2 + ... + qS5*s^12
2973a8617a8SJordan K. Hubbard * and
2983a8617a8SJordan K. Hubbard * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
2993a8617a8SJordan K. Hubbard */
3003a8617a8SJordan K. Hubbard static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
3013a8617a8SJordan K. Hubbard 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
3023a8617a8SJordan K. Hubbard 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
3033a8617a8SJordan K. Hubbard 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
3043a8617a8SJordan K. Hubbard 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
3053a8617a8SJordan K. Hubbard 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
3063a8617a8SJordan K. Hubbard 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
3073a8617a8SJordan K. Hubbard };
3083a8617a8SJordan K. Hubbard static const double qS8[6] = {
3093a8617a8SJordan K. Hubbard 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
3103a8617a8SJordan K. Hubbard 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
3113a8617a8SJordan K. Hubbard 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
3123a8617a8SJordan K. Hubbard 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
3133a8617a8SJordan K. Hubbard 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
3143a8617a8SJordan K. Hubbard -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
3153a8617a8SJordan K. Hubbard };
3163a8617a8SJordan K. Hubbard
3173a8617a8SJordan K. Hubbard static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
3183a8617a8SJordan K. Hubbard 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
3193a8617a8SJordan K. Hubbard 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
3203a8617a8SJordan K. Hubbard 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
3213a8617a8SJordan K. Hubbard 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
3223a8617a8SJordan K. Hubbard 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
3233a8617a8SJordan K. Hubbard 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
3243a8617a8SJordan K. Hubbard };
3253a8617a8SJordan K. Hubbard static const double qS5[6] = {
3263a8617a8SJordan K. Hubbard 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
3273a8617a8SJordan K. Hubbard 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
3283a8617a8SJordan K. Hubbard 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
3293a8617a8SJordan K. Hubbard 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
3303a8617a8SJordan K. Hubbard 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
3313a8617a8SJordan K. Hubbard -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
3323a8617a8SJordan K. Hubbard };
3333a8617a8SJordan K. Hubbard
3343a8617a8SJordan K. Hubbard static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
3353a8617a8SJordan K. Hubbard 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
3363a8617a8SJordan K. Hubbard 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
3373a8617a8SJordan K. Hubbard 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
3383a8617a8SJordan K. Hubbard 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
3393a8617a8SJordan K. Hubbard 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
3403a8617a8SJordan K. Hubbard 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
3413a8617a8SJordan K. Hubbard };
3423a8617a8SJordan K. Hubbard static const double qS3[6] = {
3433a8617a8SJordan K. Hubbard 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
3443a8617a8SJordan K. Hubbard 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
3453a8617a8SJordan K. Hubbard 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
3463a8617a8SJordan K. Hubbard 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
3473a8617a8SJordan K. Hubbard 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
3483a8617a8SJordan K. Hubbard -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
3493a8617a8SJordan K. Hubbard };
3503a8617a8SJordan K. Hubbard
3513a8617a8SJordan K. Hubbard static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
3523a8617a8SJordan K. Hubbard 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
3533a8617a8SJordan K. Hubbard 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
3543a8617a8SJordan K. Hubbard 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
3553a8617a8SJordan K. Hubbard 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
3563a8617a8SJordan K. Hubbard 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
3573a8617a8SJordan K. Hubbard 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
3583a8617a8SJordan K. Hubbard };
3593a8617a8SJordan K. Hubbard static const double qS2[6] = {
3603a8617a8SJordan K. Hubbard 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
3613a8617a8SJordan K. Hubbard 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
3623a8617a8SJordan K. Hubbard 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
3633a8617a8SJordan K. Hubbard 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
3643a8617a8SJordan K. Hubbard 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
3653a8617a8SJordan K. Hubbard -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
3663a8617a8SJordan K. Hubbard };
3673a8617a8SJordan K. Hubbard
368a737ef56SSteve Kargl static __inline double
qzero(double x)369a737ef56SSteve Kargl qzero(double x)
3703a8617a8SJordan K. Hubbard {
37176c528d3SPedro F. Giffuni static const double eighth = 0.125;
3723a8617a8SJordan K. Hubbard const double *p,*q;
3733a8617a8SJordan K. Hubbard double s,r,z;
3743a8617a8SJordan K. Hubbard int32_t ix;
3753a8617a8SJordan K. Hubbard GET_HIGH_WORD(ix,x);
3763a8617a8SJordan K. Hubbard ix &= 0x7fffffff;
3773a8617a8SJordan K. Hubbard if(ix>=0x40200000) {p = qR8; q= qS8;}
3783a8617a8SJordan K. Hubbard else if(ix>=0x40122E8B){p = qR5; q= qS5;}
3793a8617a8SJordan K. Hubbard else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
380d300dc23SPedro F. Giffuni else {p = qR2; q= qS2;} /* ix>=0x40000000 */
3813a8617a8SJordan K. Hubbard z = one/(x*x);
3823a8617a8SJordan K. Hubbard r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
3833a8617a8SJordan K. Hubbard s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
38476c528d3SPedro F. Giffuni return (r/s-eighth)/x;
3853a8617a8SJordan K. Hubbard }
386