xref: /freebsd/lib/msun/src/e_exp.c (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 
2 /*
3  * ====================================================
4  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* exp(x)
13  * Returns the exponential of x.
14  *
15  * Method
16  *   1. Argument reduction:
17  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
18  *	Given x, find r and integer k such that
19  *
20  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
21  *
22  *      Here r will be represented as r = hi-lo for better
23  *	accuracy.
24  *
25  *   2. Approximation of exp(r) by a special rational function on
26  *	the interval [0,0.34658]:
27  *	Write
28  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
29  *      We use a special Remes algorithm on [0,0.34658] to generate
30  * 	a polynomial of degree 5 to approximate R. The maximum error
31  *	of this polynomial approximation is bounded by 2**-59. In
32  *	other words,
33  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
34  *  	(where z=r*r, and the values of P1 to P5 are listed below)
35  *	and
36  *	    |                  5          |     -59
37  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
38  *	    |                             |
39  *	The computation of exp(r) thus becomes
40  *                             2*r
41  *		exp(r) = 1 + -------
42  *		              R - r
43  *                                 r*R1(r)
44  *		       = 1 + r + ----------- (for better accuracy)
45  *		                  2 - R1(r)
46  *	where
47  *			         2       4             10
48  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
49  *
50  *   3. Scale back to obtain exp(x):
51  *	From step 1, we have
52  *	   exp(x) = 2^k * exp(r)
53  *
54  * Special cases:
55  *	exp(INF) is INF, exp(NaN) is NaN;
56  *	exp(-INF) is 0, and
57  *	for finite argument, only exp(0)=1 is exact.
58  *
59  * Accuracy:
60  *	according to an error analysis, the error is always less than
61  *	1 ulp (unit in the last place).
62  *
63  * Misc. info.
64  *	For IEEE double
65  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
66  *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
67  *
68  * Constants:
69  * The hexadecimal values are the intended ones for the following
70  * constants. The decimal values may be used, provided that the
71  * compiler will convert from decimal to binary accurately enough
72  * to produce the hexadecimal values shown.
73  */
74 
75 #include <float.h>
76 
77 #include "math.h"
78 #include "math_private.h"
79 
80 static const double
81 one	= 1.0,
82 halF[2]	= {0.5,-0.5,},
83 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
84 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
85 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
86 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
87 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
88 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
89 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
90 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
91 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
92 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
93 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
94 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
95 
96 static volatile double
97 huge	= 1.0e+300,
98 twom1000= 9.33263618503218878990e-302;     /* 2**-1000=0x01700000,0*/
99 
100 double
101 exp(double x)	/* default IEEE double exp */
102 {
103 	double y,hi=0.0,lo=0.0,c,t,twopk;
104 	int32_t k=0,xsb;
105 	u_int32_t hx;
106 
107 	GET_HIGH_WORD(hx,x);
108 	xsb = (hx>>31)&1;		/* sign bit of x */
109 	hx &= 0x7fffffff;		/* high word of |x| */
110 
111     /* filter out non-finite argument */
112 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
113             if(hx>=0x7ff00000) {
114 	        u_int32_t lx;
115 		GET_LOW_WORD(lx,x);
116 		if(((hx&0xfffff)|lx)!=0)
117 		     return x+x; 		/* NaN */
118 		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
119 	    }
120 	    if(x > o_threshold) return huge*huge; /* overflow */
121 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
122 	}
123 
124     /* argument reduction */
125 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
126 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
127 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
128 	    } else {
129 		k  = (int)(invln2*x+halF[xsb]);
130 		t  = k;
131 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
132 		lo = t*ln2LO[0];
133 	    }
134 	    STRICT_ASSIGN(double, x, hi - lo);
135 	}
136 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
137 	    if(huge+x>one) return one+x;/* trigger inexact */
138 	}
139 	else k = 0;
140 
141     /* x is now in primary range */
142 	t  = x*x;
143 	if(k >= -1021)
144 	    INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20, 0);
145 	else
146 	    INSERT_WORDS(twopk,((u_int32_t)(0x3ff+(k+1000)))<<20, 0);
147 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
148 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
149 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
150 	if(k >= -1021) {
151 	    if (k==1024) return y*2.0*0x1p1023;
152 	    return y*twopk;
153 	} else {
154 	    return y*twopk*twom1000;
155 	}
156 }
157 
158 #if (LDBL_MANT_DIG == 53)
159 __weak_reference(exp, expl);
160 #endif
161