xref: /freebsd/lib/msun/src/e_exp.c (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 
2 /*
3  * ====================================================
4  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 #include <sys/cdefs.h>
13 /* exp(x)
14  * Returns the exponential of x.
15  *
16  * Method
17  *   1. Argument reduction:
18  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
19  *	Given x, find r and integer k such that
20  *
21  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
22  *
23  *      Here r will be represented as r = hi-lo for better
24  *	accuracy.
25  *
26  *   2. Approximation of exp(r) by a special rational function on
27  *	the interval [0,0.34658]:
28  *	Write
29  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
30  *      We use a special Remes algorithm on [0,0.34658] to generate
31  * 	a polynomial of degree 5 to approximate R. The maximum error
32  *	of this polynomial approximation is bounded by 2**-59. In
33  *	other words,
34  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
35  *  	(where z=r*r, and the values of P1 to P5 are listed below)
36  *	and
37  *	    |                  5          |     -59
38  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
39  *	    |                             |
40  *	The computation of exp(r) thus becomes
41  *                             2*r
42  *		exp(r) = 1 + -------
43  *		              R - r
44  *                                 r*R1(r)
45  *		       = 1 + r + ----------- (for better accuracy)
46  *		                  2 - R1(r)
47  *	where
48  *			         2       4             10
49  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
50  *
51  *   3. Scale back to obtain exp(x):
52  *	From step 1, we have
53  *	   exp(x) = 2^k * exp(r)
54  *
55  * Special cases:
56  *	exp(INF) is INF, exp(NaN) is NaN;
57  *	exp(-INF) is 0, and
58  *	for finite argument, only exp(0)=1 is exact.
59  *
60  * Accuracy:
61  *	according to an error analysis, the error is always less than
62  *	1 ulp (unit in the last place).
63  *
64  * Misc. info.
65  *	For IEEE double
66  *	    if x >  7.09782712893383973096e+02 then exp(x) overflow
67  *	    if x < -7.45133219101941108420e+02 then exp(x) underflow
68  *
69  * Constants:
70  * The hexadecimal values are the intended ones for the following
71  * constants. The decimal values may be used, provided that the
72  * compiler will convert from decimal to binary accurately enough
73  * to produce the hexadecimal values shown.
74  */
75 
76 #include <float.h>
77 
78 #include "math.h"
79 #include "math_private.h"
80 
81 static const double
82 one	= 1.0,
83 halF[2]	= {0.5,-0.5,},
84 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
85 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
86 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
87 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
88 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
89 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
90 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
91 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
92 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
93 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
94 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
95 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
96 
97 static volatile double
98 huge	= 1.0e+300,
99 twom1000= 9.33263618503218878990e-302;     /* 2**-1000=0x01700000,0*/
100 
101 double
102 exp(double x)	/* default IEEE double exp */
103 {
104 	double y,hi=0.0,lo=0.0,c,t,twopk;
105 	int32_t k=0,xsb;
106 	u_int32_t hx;
107 
108 	GET_HIGH_WORD(hx,x);
109 	xsb = (hx>>31)&1;		/* sign bit of x */
110 	hx &= 0x7fffffff;		/* high word of |x| */
111 
112     /* filter out non-finite argument */
113 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
114             if(hx>=0x7ff00000) {
115 	        u_int32_t lx;
116 		GET_LOW_WORD(lx,x);
117 		if(((hx&0xfffff)|lx)!=0)
118 		     return x+x; 		/* NaN */
119 		else return (xsb==0)? x:0.0;	/* exp(+-inf)={inf,0} */
120 	    }
121 	    if(x > o_threshold) return huge*huge; /* overflow */
122 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
123 	}
124 
125     /* argument reduction */
126 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
127 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
128 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
129 	    } else {
130 		k  = (int)(invln2*x+halF[xsb]);
131 		t  = k;
132 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
133 		lo = t*ln2LO[0];
134 	    }
135 	    STRICT_ASSIGN(double, x, hi - lo);
136 	}
137 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
138 	    if(huge+x>one) return one+x;/* trigger inexact */
139 	}
140 	else k = 0;
141 
142     /* x is now in primary range */
143 	t  = x*x;
144 	if(k >= -1021)
145 	    INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20, 0);
146 	else
147 	    INSERT_WORDS(twopk,((u_int32_t)(0x3ff+(k+1000)))<<20, 0);
148 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
149 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
150 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
151 	if(k >= -1021) {
152 	    if (k==1024) return y*2.0*0x1p1023;
153 	    return y*twopk;
154 	} else {
155 	    return y*twopk*twom1000;
156 	}
157 }
158 
159 #if (LDBL_MANT_DIG == 53)
160 __weak_reference(exp, expl);
161 #endif
162