xref: /freebsd/lib/msun/src/e_asin.c (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* asin(x)
14  * Method :
15  *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
16  *	we approximate asin(x) on [0,0.5] by
17  *		asin(x) = x + x*x^2*R(x^2)
18  *	where
19  *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
20  *	and its remez error is bounded by
21  *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
22  *
23  *	For x in [0.5,1]
24  *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
25  *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
26  *	then for x>0.98
27  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
28  *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
29  *	For x<=0.98, let pio4_hi = pio2_hi/2, then
30  *		f = hi part of s;
31  *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
32  *	and
33  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
34  *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
35  *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
36  *
37  * Special cases:
38  *	if x is NaN, return x itself;
39  *	if |x|>1, return NaN with invalid signal.
40  *
41  */
42 
43 #include <float.h>
44 
45 #include "math.h"
46 #include "math_private.h"
47 
48 static const double
49 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
50 huge =  1.000e+300,
51 pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
52 pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
53 pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
54 	/* coefficient for R(x^2) */
55 pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
56 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
57 pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
58 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
59 pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
60 pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
61 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
62 qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
63 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
64 qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
65 
66 double
67 asin(double x)
68 {
69 	double t=0.0,w,p,q,c,r,s;
70 	int32_t hx,ix;
71 	GET_HIGH_WORD(hx,x);
72 	ix = hx&0x7fffffff;
73 	if(ix>= 0x3ff00000) {		/* |x|>= 1 */
74 	    u_int32_t lx;
75 	    GET_LOW_WORD(lx,x);
76 	    if(((ix-0x3ff00000)|lx)==0)
77 		    /* asin(1)=+-pi/2 with inexact */
78 		return x*pio2_hi+x*pio2_lo;
79 	    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */
80 	} else if (ix<0x3fe00000) {	/* |x|<0.5 */
81 	    if(ix<0x3e500000) {		/* if |x| < 2**-26 */
82 		if(huge+x>one) return x;/* return x with inexact if x!=0*/
83 	    }
84 	    t = x*x;
85 	    p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
86 	    q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
87 	    w = p/q;
88 	    return x+x*w;
89 	}
90 	/* 1> |x|>= 0.5 */
91 	w = one-fabs(x);
92 	t = w*0.5;
93 	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
94 	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
95 	s = sqrt(t);
96 	if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */
97 	    w = p/q;
98 	    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
99 	} else {
100 	    w  = s;
101 	    SET_LOW_WORD(w,0);
102 	    c  = (t-w*w)/(s+w);
103 	    r  = p/q;
104 	    p  = 2.0*s*r-(pio2_lo-2.0*c);
105 	    q  = pio4_hi-2.0*w;
106 	    t  = pio4_hi-(p-q);
107 	}
108 	if(hx>0) return t; else return -t;
109 }
110 
111 #if LDBL_MANT_DIG == 53
112 __weak_reference(asin, asinl);
113 #endif
114