xref: /freebsd/lib/msun/src/e_acos.c (revision 952d112864d8008aa87278a30a539d888a8493cd)
1 /* @(#)e_acos.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #ifndef lint
14 static char rcsid[] = "$Id: e_acos.c,v 1.5 1997/02/22 15:09:54 peter Exp $";
15 #endif
16 
17 /* __ieee754_acos(x)
18  * Method :
19  *	acos(x)  = pi/2 - asin(x)
20  *	acos(-x) = pi/2 + asin(x)
21  * For |x|<=0.5
22  *	acos(x) = pi/2 - (x + x*x^2*R(x^2))	(see asin.c)
23  * For x>0.5
24  * 	acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
25  *		= 2asin(sqrt((1-x)/2))
26  *		= 2s + 2s*z*R(z) 	...z=(1-x)/2, s=sqrt(z)
27  *		= 2f + (2c + 2s*z*R(z))
28  *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
29  *     for f so that f+c ~ sqrt(z).
30  * For x<-0.5
31  *	acos(x) = pi - 2asin(sqrt((1-|x|)/2))
32  *		= pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
33  *
34  * Special cases:
35  *	if x is NaN, return x itself;
36  *	if |x|>1, return NaN with invalid signal.
37  *
38  * Function needed: __ieee754_sqrt
39  */
40 
41 #include "math.h"
42 #include "math_private.h"
43 
44 #ifdef __STDC__
45 static const double
46 #else
47 static double
48 #endif
49 one=  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
50 pi =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
51 pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
52 pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
53 pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
54 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
55 pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
56 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
57 pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
58 pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
59 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
60 qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
61 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
62 qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
63 
64 #ifdef __STDC__
65 	double __generic___ieee754_acos(double x)
66 #else
67 	double __generic___ieee754_acos(x)
68 	double x;
69 #endif
70 {
71 	double z,p,q,r,w,s,c,df;
72 	int32_t hx,ix;
73 	GET_HIGH_WORD(hx,x);
74 	ix = hx&0x7fffffff;
75 	if(ix>=0x3ff00000) {	/* |x| >= 1 */
76 	    u_int32_t lx;
77 	    GET_LOW_WORD(lx,x);
78 	    if(((ix-0x3ff00000)|lx)==0) {	/* |x|==1 */
79 		if(hx>0) return 0.0;		/* acos(1) = 0  */
80 		else return pi+2.0*pio2_lo;	/* acos(-1)= pi */
81 	    }
82 	    return (x-x)/(x-x);		/* acos(|x|>1) is NaN */
83 	}
84 	if(ix<0x3fe00000) {	/* |x| < 0.5 */
85 	    if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
86 	    z = x*x;
87 	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
88 	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
89 	    r = p/q;
90 	    return pio2_hi - (x - (pio2_lo-x*r));
91 	} else  if (hx<0) {		/* x < -0.5 */
92 	    z = (one+x)*0.5;
93 	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
94 	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
95 	    s = __ieee754_sqrt(z);
96 	    r = p/q;
97 	    w = r*s-pio2_lo;
98 	    return pi - 2.0*(s+w);
99 	} else {			/* x > 0.5 */
100 	    z = (one-x)*0.5;
101 	    s = __ieee754_sqrt(z);
102 	    df = s;
103 	    SET_LOW_WORD(df,0);
104 	    c  = (z-df*df)/(s+df);
105 	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
106 	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
107 	    r = p/q;
108 	    w = r*s+c;
109 	    return 2.0*(df+w);
110 	}
111 }
112