xref: /freebsd/lib/msun/src/e_acos.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 
2 /* @(#)e_acos.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #ifndef lint
15 static char rcsid[] = "$FreeBSD$";
16 #endif
17 
18 /* __ieee754_acos(x)
19  * Method :
20  *	acos(x)  = pi/2 - asin(x)
21  *	acos(-x) = pi/2 + asin(x)
22  * For |x|<=0.5
23  *	acos(x) = pi/2 - (x + x*x^2*R(x^2))	(see asin.c)
24  * For x>0.5
25  * 	acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
26  *		= 2asin(sqrt((1-x)/2))
27  *		= 2s + 2s*z*R(z) 	...z=(1-x)/2, s=sqrt(z)
28  *		= 2f + (2c + 2s*z*R(z))
29  *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
30  *     for f so that f+c ~ sqrt(z).
31  * For x<-0.5
32  *	acos(x) = pi - 2asin(sqrt((1-|x|)/2))
33  *		= pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
34  *
35  * Special cases:
36  *	if x is NaN, return x itself;
37  *	if |x|>1, return NaN with invalid signal.
38  *
39  * Function needed: sqrt
40  */
41 
42 #include "math.h"
43 #include "math_private.h"
44 
45 static const double
46 one=  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
47 pi =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
48 pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
49 pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
50 pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
51 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
52 pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
53 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
54 pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
55 pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
56 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
57 qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
58 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
59 qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
60 
61 double
62 __ieee754_acos(double x)
63 {
64 	double z,p,q,r,w,s,c,df;
65 	int32_t hx,ix;
66 	GET_HIGH_WORD(hx,x);
67 	ix = hx&0x7fffffff;
68 	if(ix>=0x3ff00000) {	/* |x| >= 1 */
69 	    u_int32_t lx;
70 	    GET_LOW_WORD(lx,x);
71 	    if(((ix-0x3ff00000)|lx)==0) {	/* |x|==1 */
72 		if(hx>0) return 0.0;		/* acos(1) = 0  */
73 		else return pi+2.0*pio2_lo;	/* acos(-1)= pi */
74 	    }
75 	    return (x-x)/(x-x);		/* acos(|x|>1) is NaN */
76 	}
77 	if(ix<0x3fe00000) {	/* |x| < 0.5 */
78 	    if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
79 	    z = x*x;
80 	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
81 	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
82 	    r = p/q;
83 	    return pio2_hi - (x - (pio2_lo-x*r));
84 	} else  if (hx<0) {		/* x < -0.5 */
85 	    z = (one+x)*0.5;
86 	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
87 	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
88 	    s = sqrt(z);
89 	    r = p/q;
90 	    w = r*s-pio2_lo;
91 	    return pi - 2.0*(s+w);
92 	} else {			/* x > 0.5 */
93 	    z = (one-x)*0.5;
94 	    s = sqrt(z);
95 	    df = s;
96 	    SET_LOW_WORD(df,0);
97 	    c  = (z-df*df)/(s+df);
98 	    p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
99 	    q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
100 	    r = p/q;
101 	    w = r*s+c;
102 	    return 2.0*(df+w);
103 	}
104 }
105