xref: /freebsd/lib/msun/src/catrigl.c (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 /*-
2  * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
3  * Copyright (c) 2017 Mahdi Mokhtari <mmokhi@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 /*
29  * The algorithm is very close to that in "Implementing the complex arcsine
30  * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
31  * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
32  * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
33  * http://dl.acm.org/citation.cfm?id=275324.
34  *
35  * See catrig.c for complete comments.
36  *
37  * XXX comments were removed automatically, and even short ones on the right
38  * of statements were removed (all of them), contrary to normal style.  Only
39  * a few comments on the right of declarations remain.
40  */
41 
42 #include <complex.h>
43 #include <float.h>
44 
45 #include "invtrig.h"
46 #include "math.h"
47 #include "math_private.h"
48 
49 #undef isinf
50 #define isinf(x)	(fabsl(x) == INFINITY)
51 #undef isnan
52 #define isnan(x)	((x) != (x))
53 #define	raise_inexact()	do { volatile float junk __unused = 1 + tiny; } while(0)
54 #undef signbit
55 #define signbit(x)	(__builtin_signbitl(x))
56 
57 #if LDBL_MAX_EXP != 0x4000
58 #error "Unsupported long double format"
59 #endif
60 
61 static const long double
62 A_crossover =		10,
63 B_crossover =		0.6417,
64 FOUR_SQRT_MIN =		0x1p-8189L,
65 HALF_MAX =		0x1p16383L,
66 QUARTER_SQRT_MAX =	0x1p8189L,
67 RECIP_EPSILON =		1 / LDBL_EPSILON,
68 SQRT_MIN =		0x1p-8191L;
69 
70 #if LDBL_MANT_DIG == 64
71 static const union IEEEl2bits
72 um_e =		LD80C(0xadf85458a2bb4a9b,  1, 2.71828182845904523536e+0L),
73 um_ln2 =	LD80C(0xb17217f7d1cf79ac, -1, 6.93147180559945309417e-1L);
74 #define		m_e	um_e.e
75 #define		m_ln2	um_ln2.e
76 static const long double
77 /* The next 2 literals for non-i386.  Misrounding them on i386 is harmless. */
78 SQRT_3_EPSILON = 5.70316273435758915310e-10,	/*  0x9cc470a0490973e8.0p-94 */
79 SQRT_6_EPSILON = 8.06549008734932771664e-10;	/*  0xddb3d742c265539e.0p-94 */
80 #elif LDBL_MANT_DIG == 113
81 static const long double
82 m_e =		2.71828182845904523536028747135266250e0L,	/* 0x15bf0a8b1457695355fb8ac404e7a.0p-111 */
83 m_ln2 =		6.93147180559945309417232121458176568e-1L,	/* 0x162e42fefa39ef35793c7673007e6.0p-113 */
84 SQRT_3_EPSILON = 2.40370335797945490975336727199878124e-17,	/*  0x1bb67ae8584caa73b25742d7078b8.0p-168 */
85 SQRT_6_EPSILON = 3.39934988877629587239082586223300391e-17;	/*  0x13988e1409212e7d0321914321a55.0p-167 */
86 #else
87 #error "Unsupported long double format"
88 #endif
89 
90 static const volatile float
91 tiny =			0x1p-100;
92 
93 static long double complex clog_for_large_values(long double complex z);
94 
95 static inline long double
96 f(long double a, long double b, long double hypot_a_b)
97 {
98 	if (b < 0)
99 		return ((hypot_a_b - b) / 2);
100 	if (b == 0)
101 		return (a / 2);
102 	return (a * a / (hypot_a_b + b) / 2);
103 }
104 
105 static inline void
106 do_hard_work(long double x, long double y, long double *rx, int *B_is_usable,
107     long double *B, long double *sqrt_A2my2, long double *new_y)
108 {
109 	long double R, S, A;
110 	long double Am1, Amy;
111 
112 	R = hypotl(x, y + 1);
113 	S = hypotl(x, y - 1);
114 
115 	A = (R + S) / 2;
116 	if (A < 1)
117 		A = 1;
118 
119 	if (A < A_crossover) {
120 		if (y == 1 && x < LDBL_EPSILON * LDBL_EPSILON / 128) {
121 			*rx = sqrtl(x);
122 		} else if (x >= LDBL_EPSILON * fabsl(y - 1)) {
123 			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
124 			*rx = log1pl(Am1 + sqrtl(Am1 * (A + 1)));
125 		} else if (y < 1) {
126 			*rx = x / sqrtl((1 - y) * (1 + y));
127 		} else {
128 			*rx = log1pl((y - 1) + sqrtl((y - 1) * (y + 1)));
129 		}
130 	} else {
131 		*rx = logl(A + sqrtl(A * A - 1));
132 	}
133 
134 	*new_y = y;
135 
136 	if (y < FOUR_SQRT_MIN) {
137 		*B_is_usable = 0;
138 		*sqrt_A2my2 = A * (2 / LDBL_EPSILON);
139 		*new_y = y * (2 / LDBL_EPSILON);
140 		return;
141 	}
142 
143 	*B = y / A;
144 	*B_is_usable = 1;
145 
146 	if (*B > B_crossover) {
147 		*B_is_usable = 0;
148 		if (y == 1 && x < LDBL_EPSILON / 128) {
149 			*sqrt_A2my2 = sqrtl(x) * sqrtl((A + y) / 2);
150 		} else if (x >= LDBL_EPSILON * fabsl(y - 1)) {
151 			Amy = f(x, y + 1, R) + f(x, y - 1, S);
152 			*sqrt_A2my2 = sqrtl(Amy * (A + y));
153 		} else if (y > 1) {
154 			*sqrt_A2my2 = x * (4 / LDBL_EPSILON / LDBL_EPSILON) * y /
155 			    sqrtl((y + 1) * (y - 1));
156 			*new_y = y * (4 / LDBL_EPSILON / LDBL_EPSILON);
157 		} else {
158 			*sqrt_A2my2 = sqrtl((1 - y) * (1 + y));
159 		}
160 	}
161 }
162 
163 long double complex
164 casinhl(long double complex z)
165 {
166 	long double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
167 	int B_is_usable;
168 	long double complex w;
169 
170 	x = creall(z);
171 	y = cimagl(z);
172 	ax = fabsl(x);
173 	ay = fabsl(y);
174 
175 	if (isnan(x) || isnan(y)) {
176 		if (isinf(x))
177 			return (CMPLXL(x, y + y));
178 		if (isinf(y))
179 			return (CMPLXL(y, x + x));
180 		if (y == 0)
181 			return (CMPLXL(x + x, y));
182 		return (CMPLXL(nan_mix(x, y), nan_mix(x, y)));
183 	}
184 
185 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
186 		if (signbit(x) == 0)
187 			w = clog_for_large_values(z) + m_ln2;
188 		else
189 			w = clog_for_large_values(-z) + m_ln2;
190 		return (CMPLXL(copysignl(creall(w), x),
191 		    copysignl(cimagl(w), y)));
192 	}
193 
194 	if (x == 0 && y == 0)
195 		return (z);
196 
197 	raise_inexact();
198 
199 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
200 		return (z);
201 
202 	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
203 	if (B_is_usable)
204 		ry = asinl(B);
205 	else
206 		ry = atan2l(new_y, sqrt_A2my2);
207 	return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
208 }
209 
210 long double complex
211 casinl(long double complex z)
212 {
213 	long double complex w;
214 
215 	w = casinhl(CMPLXL(cimagl(z), creall(z)));
216 	return (CMPLXL(cimagl(w), creall(w)));
217 }
218 
219 long double complex
220 cacosl(long double complex z)
221 {
222 	long double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
223 	int sx, sy;
224 	int B_is_usable;
225 	long double complex w;
226 
227 	x = creall(z);
228 	y = cimagl(z);
229 	sx = signbit(x);
230 	sy = signbit(y);
231 	ax = fabsl(x);
232 	ay = fabsl(y);
233 
234 	if (isnan(x) || isnan(y)) {
235 		if (isinf(x))
236 			return (CMPLXL(y + y, -INFINITY));
237 		if (isinf(y))
238 			return (CMPLXL(x + x, -y));
239 		if (x == 0)
240 			return (CMPLXL(pio2_hi + pio2_lo, y + y));
241 		return (CMPLXL(nan_mix(x, y), nan_mix(x, y)));
242 	}
243 
244 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
245 		w = clog_for_large_values(z);
246 		rx = fabsl(cimagl(w));
247 		ry = creall(w) + m_ln2;
248 		if (sy == 0)
249 			ry = -ry;
250 		return (CMPLXL(rx, ry));
251 	}
252 
253 	if (x == 1 && y == 0)
254 		return (CMPLXL(0, -y));
255 
256 	raise_inexact();
257 
258 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
259 		return (CMPLXL(pio2_hi - (x - pio2_lo), -y));
260 
261 	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
262 	if (B_is_usable) {
263 		if (sx == 0)
264 			rx = acosl(B);
265 		else
266 			rx = acosl(-B);
267 	} else {
268 		if (sx == 0)
269 			rx = atan2l(sqrt_A2mx2, new_x);
270 		else
271 			rx = atan2l(sqrt_A2mx2, -new_x);
272 	}
273 	if (sy == 0)
274 		ry = -ry;
275 	return (CMPLXL(rx, ry));
276 }
277 
278 long double complex
279 cacoshl(long double complex z)
280 {
281 	long double complex w;
282 	long double rx, ry;
283 
284 	w = cacosl(z);
285 	rx = creall(w);
286 	ry = cimagl(w);
287 	if (isnan(rx) && isnan(ry))
288 		return (CMPLXL(ry, rx));
289 	if (isnan(rx))
290 		return (CMPLXL(fabsl(ry), rx));
291 	if (isnan(ry))
292 		return (CMPLXL(ry, ry));
293 	return (CMPLXL(fabsl(ry), copysignl(rx, cimagl(z))));
294 }
295 
296 static long double complex
297 clog_for_large_values(long double complex z)
298 {
299 	long double x, y;
300 	long double ax, ay, t;
301 
302 	x = creall(z);
303 	y = cimagl(z);
304 	ax = fabsl(x);
305 	ay = fabsl(y);
306 	if (ax < ay) {
307 		t = ax;
308 		ax = ay;
309 		ay = t;
310 	}
311 
312 	if (ax > HALF_MAX)
313 		return (CMPLXL(logl(hypotl(x / m_e, y / m_e)) + 1,
314 		    atan2l(y, x)));
315 
316 	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
317 		return (CMPLXL(logl(hypotl(x, y)), atan2l(y, x)));
318 
319 	return (CMPLXL(logl(ax * ax + ay * ay) / 2, atan2l(y, x)));
320 }
321 
322 static inline long double
323 sum_squares(long double x, long double y)
324 {
325 
326 	if (y < SQRT_MIN)
327 		return (x * x);
328 
329 	return (x * x + y * y);
330 }
331 
332 static inline long double
333 real_part_reciprocal(long double x, long double y)
334 {
335 	long double scale;
336 	uint16_t hx, hy;
337 	int16_t ix, iy;
338 
339 	GET_LDBL_EXPSIGN(hx, x);
340 	ix = hx & 0x7fff;
341 	GET_LDBL_EXPSIGN(hy, y);
342 	iy = hy & 0x7fff;
343 #define	BIAS	(LDBL_MAX_EXP - 1)
344 #define	CUTOFF	(LDBL_MANT_DIG / 2 + 1)
345 	if (ix - iy >= CUTOFF || isinf(x))
346 		return (1 / x);
347 	if (iy - ix >= CUTOFF)
348 		return (x / y / y);
349 	if (ix <= BIAS + LDBL_MAX_EXP / 2 - CUTOFF)
350 		return (x / (x * x + y * y));
351 	scale = 1;
352 	SET_LDBL_EXPSIGN(scale, 0x7fff - ix);
353 	x *= scale;
354 	y *= scale;
355 	return (x / (x * x + y * y) * scale);
356 }
357 
358 long double complex
359 catanhl(long double complex z)
360 {
361 	long double x, y, ax, ay, rx, ry;
362 
363 	x = creall(z);
364 	y = cimagl(z);
365 	ax = fabsl(x);
366 	ay = fabsl(y);
367 
368 	if (y == 0 && ax <= 1)
369 		return (CMPLXL(atanhl(x), y));
370 
371 	if (x == 0)
372 		return (CMPLXL(x, atanl(y)));
373 
374 	if (isnan(x) || isnan(y)) {
375 		if (isinf(x))
376 			return (CMPLXL(copysignl(0, x), y + y));
377 		if (isinf(y))
378 			return (CMPLXL(copysignl(0, x),
379 			    copysignl(pio2_hi + pio2_lo, y)));
380 		return (CMPLXL(nan_mix(x, y), nan_mix(x, y)));
381 	}
382 
383 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
384 		return (CMPLXL(real_part_reciprocal(x, y),
385 		    copysignl(pio2_hi + pio2_lo, y)));
386 
387 	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
388 		raise_inexact();
389 		return (z);
390 	}
391 
392 	if (ax == 1 && ay < LDBL_EPSILON)
393 		rx = (m_ln2 - logl(ay)) / 2;
394 	else
395 		rx = log1pl(4 * ax / sum_squares(ax - 1, ay)) / 4;
396 
397 	if (ax == 1)
398 		ry = atan2l(2, -ay) / 2;
399 	else if (ay < LDBL_EPSILON)
400 		ry = atan2l(2 * ay, (1 - ax) * (1 + ax)) / 2;
401 	else
402 		ry = atan2l(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
403 
404 	return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
405 }
406 
407 long double complex
408 catanl(long double complex z)
409 {
410 	long double complex w;
411 
412 	w = catanhl(CMPLXL(cimagl(z), creall(z)));
413 	return (CMPLXL(cimagl(w), creall(w)));
414 }
415