xref: /freebsd/lib/msun/src/catrigf.c (revision 2e3f49888ec8851bafb22011533217487764fdb0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * The algorithm is very close to that in "Implementing the complex arcsine
31  * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
32  * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
33  * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
34  * http://dl.acm.org/citation.cfm?id=275324.
35  *
36  * See catrig.c for complete comments.
37  *
38  * XXX comments were removed automatically, and even short ones on the right
39  * of statements were removed (all of them), contrary to normal style.  Only
40  * a few comments on the right of declarations remain.
41  */
42 
43 #include <complex.h>
44 #include <float.h>
45 
46 #include "math.h"
47 #include "math_private.h"
48 
49 #undef isinf
50 #define isinf(x)	(fabsf(x) == INFINITY)
51 #undef isnan
52 #define isnan(x)	((x) != (x))
53 #define	raise_inexact()	do { volatile float junk __unused = 1 + tiny; } while(0)
54 #undef signbit
55 #define signbit(x)	(__builtin_signbitf(x))
56 
57 static const float
58 A_crossover =		10,
59 B_crossover =		0.6417,
60 FOUR_SQRT_MIN =		0x1p-61,
61 QUARTER_SQRT_MAX =	0x1p61,
62 m_e =			2.7182818285e0,		/*  0xadf854.0p-22 */
63 m_ln2 =			6.9314718056e-1,	/*  0xb17218.0p-24 */
64 pio2_hi =		1.5707962513e0,		/*  0xc90fda.0p-23 */
65 RECIP_EPSILON =		1 / FLT_EPSILON,
66 SQRT_3_EPSILON =	5.9801995673e-4,	/*  0x9cc471.0p-34 */
67 SQRT_6_EPSILON =	8.4572793338e-4,	/*  0xddb3d7.0p-34 */
68 SQRT_MIN =		0x1p-63;
69 
70 static const volatile float
71 pio2_lo =		7.5497899549e-8,	/*  0xa22169.0p-47 */
72 tiny =			0x1p-100;
73 
74 static float complex clog_for_large_values(float complex z);
75 
76 static inline float
77 f(float a, float b, float hypot_a_b)
78 {
79 	if (b < 0)
80 		return ((hypot_a_b - b) / 2);
81 	if (b == 0)
82 		return (a / 2);
83 	return (a * a / (hypot_a_b + b) / 2);
84 }
85 
86 static inline void
87 do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B,
88     float *sqrt_A2my2, float *new_y)
89 {
90 	float R, S, A;
91 	float Am1, Amy;
92 
93 	R = hypotf(x, y + 1);
94 	S = hypotf(x, y - 1);
95 
96 	A = (R + S) / 2;
97 	if (A < 1)
98 		A = 1;
99 
100 	if (A < A_crossover) {
101 		if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) {
102 			*rx = sqrtf(x);
103 		} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
104 			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
105 			*rx = log1pf(Am1 + sqrtf(Am1 * (A + 1)));
106 		} else if (y < 1) {
107 			*rx = x / sqrtf((1 - y) * (1 + y));
108 		} else {
109 			*rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1)));
110 		}
111 	} else {
112 		*rx = logf(A + sqrtf(A * A - 1));
113 	}
114 
115 	*new_y = y;
116 
117 	if (y < FOUR_SQRT_MIN) {
118 		*B_is_usable = 0;
119 		*sqrt_A2my2 = A * (2 / FLT_EPSILON);
120 		*new_y = y * (2 / FLT_EPSILON);
121 		return;
122 	}
123 
124 	*B = y / A;
125 	*B_is_usable = 1;
126 
127 	if (*B > B_crossover) {
128 		*B_is_usable = 0;
129 		if (y == 1 && x < FLT_EPSILON / 128) {
130 			*sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2);
131 		} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
132 			Amy = f(x, y + 1, R) + f(x, y - 1, S);
133 			*sqrt_A2my2 = sqrtf(Amy * (A + y));
134 		} else if (y > 1) {
135 			*sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y /
136 			    sqrtf((y + 1) * (y - 1));
137 			*new_y = y * (4 / FLT_EPSILON / FLT_EPSILON);
138 		} else {
139 			*sqrt_A2my2 = sqrtf((1 - y) * (1 + y));
140 		}
141 	}
142 }
143 
144 float complex
145 casinhf(float complex z)
146 {
147 	float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
148 	int B_is_usable;
149 	float complex w;
150 
151 	x = crealf(z);
152 	y = cimagf(z);
153 	ax = fabsf(x);
154 	ay = fabsf(y);
155 
156 	if (isnan(x) || isnan(y)) {
157 		if (isinf(x))
158 			return (CMPLXF(x, y + y));
159 		if (isinf(y))
160 			return (CMPLXF(y, x + x));
161 		if (y == 0)
162 			return (CMPLXF(x + x, y));
163 		return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
164 	}
165 
166 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
167 		if (signbit(x) == 0)
168 			w = clog_for_large_values(z) + m_ln2;
169 		else
170 			w = clog_for_large_values(-z) + m_ln2;
171 		return (CMPLXF(copysignf(crealf(w), x),
172 		    copysignf(cimagf(w), y)));
173 	}
174 
175 	if (x == 0 && y == 0)
176 		return (z);
177 
178 	raise_inexact();
179 
180 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
181 		return (z);
182 
183 	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
184 	if (B_is_usable)
185 		ry = asinf(B);
186 	else
187 		ry = atan2f(new_y, sqrt_A2my2);
188 	return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
189 }
190 
191 float complex
192 casinf(float complex z)
193 {
194 	float complex w = casinhf(CMPLXF(cimagf(z), crealf(z)));
195 
196 	return (CMPLXF(cimagf(w), crealf(w)));
197 }
198 
199 float complex
200 cacosf(float complex z)
201 {
202 	float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
203 	int sx, sy;
204 	int B_is_usable;
205 	float complex w;
206 
207 	x = crealf(z);
208 	y = cimagf(z);
209 	sx = signbit(x);
210 	sy = signbit(y);
211 	ax = fabsf(x);
212 	ay = fabsf(y);
213 
214 	if (isnan(x) || isnan(y)) {
215 		if (isinf(x))
216 			return (CMPLXF(y + y, -INFINITY));
217 		if (isinf(y))
218 			return (CMPLXF(x + x, -y));
219 		if (x == 0)
220 			return (CMPLXF(pio2_hi + pio2_lo, y + y));
221 		return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
222 	}
223 
224 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
225 		w = clog_for_large_values(z);
226 		rx = fabsf(cimagf(w));
227 		ry = crealf(w) + m_ln2;
228 		if (sy == 0)
229 			ry = -ry;
230 		return (CMPLXF(rx, ry));
231 	}
232 
233 	if (x == 1 && y == 0)
234 		return (CMPLXF(0, -y));
235 
236 	raise_inexact();
237 
238 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
239 		return (CMPLXF(pio2_hi - (x - pio2_lo), -y));
240 
241 	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
242 	if (B_is_usable) {
243 		if (sx == 0)
244 			rx = acosf(B);
245 		else
246 			rx = acosf(-B);
247 	} else {
248 		if (sx == 0)
249 			rx = atan2f(sqrt_A2mx2, new_x);
250 		else
251 			rx = atan2f(sqrt_A2mx2, -new_x);
252 	}
253 	if (sy == 0)
254 		ry = -ry;
255 	return (CMPLXF(rx, ry));
256 }
257 
258 float complex
259 cacoshf(float complex z)
260 {
261 	float complex w;
262 	float rx, ry;
263 
264 	w = cacosf(z);
265 	rx = crealf(w);
266 	ry = cimagf(w);
267 	if (isnan(rx) && isnan(ry))
268 		return (CMPLXF(ry, rx));
269 	if (isnan(rx))
270 		return (CMPLXF(fabsf(ry), rx));
271 	if (isnan(ry))
272 		return (CMPLXF(ry, ry));
273 	return (CMPLXF(fabsf(ry), copysignf(rx, cimagf(z))));
274 }
275 
276 static float complex
277 clog_for_large_values(float complex z)
278 {
279 	float x, y;
280 	float ax, ay, t;
281 
282 	x = crealf(z);
283 	y = cimagf(z);
284 	ax = fabsf(x);
285 	ay = fabsf(y);
286 	if (ax < ay) {
287 		t = ax;
288 		ax = ay;
289 		ay = t;
290 	}
291 
292 	if (ax > FLT_MAX / 2)
293 		return (CMPLXF(logf(hypotf(x / m_e, y / m_e)) + 1,
294 		    atan2f(y, x)));
295 
296 	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
297 		return (CMPLXF(logf(hypotf(x, y)), atan2f(y, x)));
298 
299 	return (CMPLXF(logf(ax * ax + ay * ay) / 2, atan2f(y, x)));
300 }
301 
302 static inline float
303 sum_squares(float x, float y)
304 {
305 
306 	if (y < SQRT_MIN)
307 		return (x * x);
308 
309 	return (x * x + y * y);
310 }
311 
312 static inline float
313 real_part_reciprocal(float x, float y)
314 {
315 	float scale;
316 	uint32_t hx, hy;
317 	int32_t ix, iy;
318 
319 	GET_FLOAT_WORD(hx, x);
320 	ix = hx & 0x7f800000;
321 	GET_FLOAT_WORD(hy, y);
322 	iy = hy & 0x7f800000;
323 #define	BIAS	(FLT_MAX_EXP - 1)
324 #define	CUTOFF	(FLT_MANT_DIG / 2 + 1)
325 	if (ix - iy >= CUTOFF << 23 || isinf(x))
326 		return (1 / x);
327 	if (iy - ix >= CUTOFF << 23)
328 		return (x / y / y);
329 	if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23)
330 		return (x / (x * x + y * y));
331 	SET_FLOAT_WORD(scale, 0x7f800000 - ix);
332 	x *= scale;
333 	y *= scale;
334 	return (x / (x * x + y * y) * scale);
335 }
336 
337 float complex
338 catanhf(float complex z)
339 {
340 	float x, y, ax, ay, rx, ry;
341 
342 	x = crealf(z);
343 	y = cimagf(z);
344 	ax = fabsf(x);
345 	ay = fabsf(y);
346 
347 	if (y == 0 && ax <= 1)
348 		return (CMPLXF(atanhf(x), y));
349 
350 	if (x == 0)
351 		return (CMPLXF(x, atanf(y)));
352 
353 	if (isnan(x) || isnan(y)) {
354 		if (isinf(x))
355 			return (CMPLXF(copysignf(0, x), y + y));
356 		if (isinf(y))
357 			return (CMPLXF(copysignf(0, x),
358 			    copysignf(pio2_hi + pio2_lo, y)));
359 		return (CMPLXF(nan_mix(x, y), nan_mix(x, y)));
360 	}
361 
362 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
363 		return (CMPLXF(real_part_reciprocal(x, y),
364 		    copysignf(pio2_hi + pio2_lo, y)));
365 
366 	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
367 		raise_inexact();
368 		return (z);
369 	}
370 
371 	if (ax == 1 && ay < FLT_EPSILON)
372 		rx = (m_ln2 - logf(ay)) / 2;
373 	else
374 		rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4;
375 
376 	if (ax == 1)
377 		ry = atan2f(2, -ay) / 2;
378 	else if (ay < FLT_EPSILON)
379 		ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2;
380 	else
381 		ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
382 
383 	return (CMPLXF(copysignf(rx, x), copysignf(ry, y)));
384 }
385 
386 float complex
387 catanf(float complex z)
388 {
389 	float complex w = catanhf(CMPLXF(cimagf(z), crealf(z)));
390 
391 	return (CMPLXF(cimagf(w), crealf(w)));
392 }
393