1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <complex.h> 30 #include <float.h> 31 32 #include "math.h" 33 #include "math_private.h" 34 35 #undef isinf 36 #define isinf(x) (fabs(x) == INFINITY) 37 #undef isnan 38 #define isnan(x) ((x) != (x)) 39 #define raise_inexact() do { volatile float junk __unused = 1 + tiny; } while(0) 40 #undef signbit 41 #define signbit(x) (__builtin_signbit(x)) 42 43 /* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */ 44 static const double 45 A_crossover = 10, /* Hull et al suggest 1.5, but 10 works better */ 46 B_crossover = 0.6417, /* suggested by Hull et al */ 47 FOUR_SQRT_MIN = 0x1p-509, /* >= 4 * sqrt(DBL_MIN) */ 48 QUARTER_SQRT_MAX = 0x1p509, /* <= sqrt(DBL_MAX) / 4 */ 49 m_e = 2.7182818284590452e0, /* 0x15bf0a8b145769.0p-51 */ 50 m_ln2 = 6.9314718055994531e-1, /* 0x162e42fefa39ef.0p-53 */ 51 pio2_hi = 1.5707963267948966e0, /* 0x1921fb54442d18.0p-52 */ 52 RECIP_EPSILON = 1 / DBL_EPSILON, 53 SQRT_3_EPSILON = 2.5809568279517849e-8, /* 0x1bb67ae8584caa.0p-78 */ 54 SQRT_6_EPSILON = 3.6500241499888571e-8, /* 0x13988e1409212e.0p-77 */ 55 SQRT_MIN = 0x1p-511; /* >= sqrt(DBL_MIN) */ 56 57 static const volatile double 58 pio2_lo = 6.1232339957367659e-17; /* 0x11a62633145c07.0p-106 */ 59 static const volatile float 60 tiny = 0x1p-100; 61 62 static double complex clog_for_large_values(double complex z); 63 64 /* 65 * Testing indicates that all these functions are accurate up to 4 ULP. 66 * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh. 67 * The functions catan(h) are a little under 2 times slower than atanh. 68 * 69 * The code for casinh, casin, cacos, and cacosh comes first. The code is 70 * rather complicated, and the four functions are highly interdependent. 71 * 72 * The code for catanh and catan comes at the end. It is much simpler than 73 * the other functions, and the code for these can be disconnected from the 74 * rest of the code. 75 */ 76 77 /* 78 * ================================ 79 * | casinh, casin, cacos, cacosh | 80 * ================================ 81 */ 82 83 /* 84 * The algorithm is very close to that in "Implementing the complex arcsine 85 * and arccosine functions using exception handling" by T. E. Hull, Thomas F. 86 * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on 87 * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335, 88 * http://dl.acm.org/citation.cfm?id=275324. 89 * 90 * Throughout we use the convention z = x + I*y. 91 * 92 * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B) 93 * where 94 * A = (|z+I| + |z-I|) / 2 95 * B = (|z+I| - |z-I|) / 2 = y/A 96 * 97 * These formulas become numerically unstable: 98 * (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that 99 * is, Re(casinh(z)) is close to 0); 100 * (b) for Im(casinh(z)) when z is close to either of the intervals 101 * [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is 102 * close to PI/2). 103 * 104 * These numerical problems are overcome by defining 105 * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2 106 * Then if A < A_crossover, we use 107 * log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1))) 108 * A-1 = f(x, 1+y) + f(x, 1-y) 109 * and if B > B_crossover, we use 110 * asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y))) 111 * A-y = f(x, y+1) + f(x, y-1) 112 * where without loss of generality we have assumed that x and y are 113 * non-negative. 114 * 115 * Much of the difficulty comes because the intermediate computations may 116 * produce overflows or underflows. This is dealt with in the paper by Hull 117 * et al by using exception handling. We do this by detecting when 118 * computations risk underflow or overflow. The hardest part is handling the 119 * underflows when computing f(a, b). 120 * 121 * Note that the function f(a, b) does not appear explicitly in the paper by 122 * Hull et al, but the idea may be found on pages 308 and 309. Introducing the 123 * function f(a, b) allows us to concentrate many of the clever tricks in this 124 * paper into one function. 125 */ 126 127 /* 128 * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2. 129 * Pass hypot(a, b) as the third argument. 130 */ 131 static inline double 132 f(double a, double b, double hypot_a_b) 133 { 134 if (b < 0) 135 return ((hypot_a_b - b) / 2); 136 if (b == 0) 137 return (a / 2); 138 return (a * a / (hypot_a_b + b) / 2); 139 } 140 141 /* 142 * All the hard work is contained in this function. 143 * x and y are assumed positive or zero, and less than RECIP_EPSILON. 144 * Upon return: 145 * rx = Re(casinh(z)) = -Im(cacos(y + I*x)). 146 * B_is_usable is set to 1 if the value of B is usable. 147 * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y. 148 * If returning sqrt_A2my2 has potential to result in an underflow, it is 149 * rescaled, and new_y is similarly rescaled. 150 */ 151 static inline void 152 do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B, 153 double *sqrt_A2my2, double *new_y) 154 { 155 double R, S, A; /* A, B, R, and S are as in Hull et al. */ 156 double Am1, Amy; /* A-1, A-y. */ 157 158 R = hypot(x, y + 1); /* |z+I| */ 159 S = hypot(x, y - 1); /* |z-I| */ 160 161 /* A = (|z+I| + |z-I|) / 2 */ 162 A = (R + S) / 2; 163 /* 164 * Mathematically A >= 1. There is a small chance that this will not 165 * be so because of rounding errors. So we will make certain it is 166 * so. 167 */ 168 if (A < 1) 169 A = 1; 170 171 if (A < A_crossover) { 172 /* 173 * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y). 174 * rx = log1p(Am1 + sqrt(Am1*(A+1))) 175 */ 176 if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) { 177 /* 178 * fp is of order x^2, and fm = x/2. 179 * A = 1 (inexactly). 180 */ 181 *rx = sqrt(x); 182 } else if (x >= DBL_EPSILON * fabs(y - 1)) { 183 /* 184 * Underflow will not occur because 185 * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN 186 */ 187 Am1 = f(x, 1 + y, R) + f(x, 1 - y, S); 188 *rx = log1p(Am1 + sqrt(Am1 * (A + 1))); 189 } else if (y < 1) { 190 /* 191 * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and 192 * A = 1 (inexactly). 193 */ 194 *rx = x / sqrt((1 - y) * (1 + y)); 195 } else { /* if (y > 1) */ 196 /* 197 * A-1 = y-1 (inexactly). 198 */ 199 *rx = log1p((y - 1) + sqrt((y - 1) * (y + 1))); 200 } 201 } else { 202 *rx = log(A + sqrt(A * A - 1)); 203 } 204 205 *new_y = y; 206 207 if (y < FOUR_SQRT_MIN) { 208 /* 209 * Avoid a possible underflow caused by y/A. For casinh this 210 * would be legitimate, but will be picked up by invoking atan2 211 * later on. For cacos this would not be legitimate. 212 */ 213 *B_is_usable = 0; 214 *sqrt_A2my2 = A * (2 / DBL_EPSILON); 215 *new_y = y * (2 / DBL_EPSILON); 216 return; 217 } 218 219 /* B = (|z+I| - |z-I|) / 2 = y/A */ 220 *B = y / A; 221 *B_is_usable = 1; 222 223 if (*B > B_crossover) { 224 *B_is_usable = 0; 225 /* 226 * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1). 227 * sqrt_A2my2 = sqrt(Amy*(A+y)) 228 */ 229 if (y == 1 && x < DBL_EPSILON / 128) { 230 /* 231 * fp is of order x^2, and fm = x/2. 232 * A = 1 (inexactly). 233 */ 234 *sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2); 235 } else if (x >= DBL_EPSILON * fabs(y - 1)) { 236 /* 237 * Underflow will not occur because 238 * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN 239 * and 240 * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN 241 */ 242 Amy = f(x, y + 1, R) + f(x, y - 1, S); 243 *sqrt_A2my2 = sqrt(Amy * (A + y)); 244 } else if (y > 1) { 245 /* 246 * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and 247 * A = y (inexactly). 248 * 249 * y < RECIP_EPSILON. So the following 250 * scaling should avoid any underflow problems. 251 */ 252 *sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y / 253 sqrt((y + 1) * (y - 1)); 254 *new_y = y * (4 / DBL_EPSILON / DBL_EPSILON); 255 } else { /* if (y < 1) */ 256 /* 257 * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and 258 * A = 1 (inexactly). 259 */ 260 *sqrt_A2my2 = sqrt((1 - y) * (1 + y)); 261 } 262 } 263 } 264 265 /* 266 * casinh(z) = z + O(z^3) as z -> 0 267 * 268 * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2) as z -> infinity 269 * The above formula works for the imaginary part as well, because 270 * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3) 271 * as z -> infinity, uniformly in y 272 */ 273 double complex 274 casinh(double complex z) 275 { 276 double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y; 277 int B_is_usable; 278 double complex w; 279 280 x = creal(z); 281 y = cimag(z); 282 ax = fabs(x); 283 ay = fabs(y); 284 285 if (isnan(x) || isnan(y)) { 286 /* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */ 287 if (isinf(x)) 288 return (CMPLX(x, y + y)); 289 /* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */ 290 if (isinf(y)) 291 return (CMPLX(y, x + x)); 292 /* casinh(NaN + I*0) = NaN + I*0 */ 293 if (y == 0) 294 return (CMPLX(x + x, y)); 295 /* 296 * All other cases involving NaN return NaN + I*NaN. 297 * C99 leaves it optional whether to raise invalid if one of 298 * the arguments is not NaN, so we opt not to raise it. 299 */ 300 return (CMPLX(nan_mix(x, y), nan_mix(x, y))); 301 } 302 303 if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { 304 /* clog...() will raise inexact unless x or y is infinite. */ 305 if (signbit(x) == 0) 306 w = clog_for_large_values(z) + m_ln2; 307 else 308 w = clog_for_large_values(-z) + m_ln2; 309 return (CMPLX(copysign(creal(w), x), copysign(cimag(w), y))); 310 } 311 312 /* Avoid spuriously raising inexact for z = 0. */ 313 if (x == 0 && y == 0) 314 return (z); 315 316 /* All remaining cases are inexact. */ 317 raise_inexact(); 318 319 if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) 320 return (z); 321 322 do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y); 323 if (B_is_usable) 324 ry = asin(B); 325 else 326 ry = atan2(new_y, sqrt_A2my2); 327 return (CMPLX(copysign(rx, x), copysign(ry, y))); 328 } 329 330 /* 331 * casin(z) = reverse(casinh(reverse(z))) 332 * where reverse(x + I*y) = y + I*x = I*conj(z). 333 */ 334 double complex 335 casin(double complex z) 336 { 337 double complex w = casinh(CMPLX(cimag(z), creal(z))); 338 339 return (CMPLX(cimag(w), creal(w))); 340 } 341 342 /* 343 * cacos(z) = PI/2 - casin(z) 344 * but do the computation carefully so cacos(z) is accurate when z is 345 * close to 1. 346 * 347 * cacos(z) = PI/2 - z + O(z^3) as z -> 0 348 * 349 * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2) as z -> infinity 350 * The above formula works for the real part as well, because 351 * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3) 352 * as z -> infinity, uniformly in y 353 */ 354 double complex 355 cacos(double complex z) 356 { 357 double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x; 358 int sx, sy; 359 int B_is_usable; 360 double complex w; 361 362 x = creal(z); 363 y = cimag(z); 364 sx = signbit(x); 365 sy = signbit(y); 366 ax = fabs(x); 367 ay = fabs(y); 368 369 if (isnan(x) || isnan(y)) { 370 /* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */ 371 if (isinf(x)) 372 return (CMPLX(y + y, -INFINITY)); 373 /* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */ 374 if (isinf(y)) 375 return (CMPLX(x + x, -y)); 376 /* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */ 377 if (x == 0) 378 return (CMPLX(pio2_hi + pio2_lo, y + y)); 379 /* 380 * All other cases involving NaN return NaN + I*NaN. 381 * C99 leaves it optional whether to raise invalid if one of 382 * the arguments is not NaN, so we opt not to raise it. 383 */ 384 return (CMPLX(nan_mix(x, y), nan_mix(x, y))); 385 } 386 387 if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { 388 /* clog...() will raise inexact unless x or y is infinite. */ 389 w = clog_for_large_values(z); 390 rx = fabs(cimag(w)); 391 ry = creal(w) + m_ln2; 392 if (sy == 0) 393 ry = -ry; 394 return (CMPLX(rx, ry)); 395 } 396 397 /* Avoid spuriously raising inexact for z = 1. */ 398 if (x == 1 && y == 0) 399 return (CMPLX(0, -y)); 400 401 /* All remaining cases are inexact. */ 402 raise_inexact(); 403 404 if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4) 405 return (CMPLX(pio2_hi - (x - pio2_lo), -y)); 406 407 do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x); 408 if (B_is_usable) { 409 if (sx == 0) 410 rx = acos(B); 411 else 412 rx = acos(-B); 413 } else { 414 if (sx == 0) 415 rx = atan2(sqrt_A2mx2, new_x); 416 else 417 rx = atan2(sqrt_A2mx2, -new_x); 418 } 419 if (sy == 0) 420 ry = -ry; 421 return (CMPLX(rx, ry)); 422 } 423 424 /* 425 * cacosh(z) = I*cacos(z) or -I*cacos(z) 426 * where the sign is chosen so Re(cacosh(z)) >= 0. 427 */ 428 double complex 429 cacosh(double complex z) 430 { 431 double complex w; 432 double rx, ry; 433 434 w = cacos(z); 435 rx = creal(w); 436 ry = cimag(w); 437 /* cacosh(NaN + I*NaN) = NaN + I*NaN */ 438 if (isnan(rx) && isnan(ry)) 439 return (CMPLX(ry, rx)); 440 /* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */ 441 /* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */ 442 if (isnan(rx)) 443 return (CMPLX(fabs(ry), rx)); 444 /* cacosh(0 + I*NaN) = NaN + I*NaN */ 445 if (isnan(ry)) 446 return (CMPLX(ry, ry)); 447 return (CMPLX(fabs(ry), copysign(rx, cimag(z)))); 448 } 449 450 /* 451 * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON. 452 */ 453 static double complex 454 clog_for_large_values(double complex z) 455 { 456 double x, y; 457 double ax, ay, t; 458 459 x = creal(z); 460 y = cimag(z); 461 ax = fabs(x); 462 ay = fabs(y); 463 if (ax < ay) { 464 t = ax; 465 ax = ay; 466 ay = t; 467 } 468 469 /* 470 * Avoid overflow in hypot() when x and y are both very large. 471 * Divide x and y by E, and then add 1 to the logarithm. This 472 * depends on E being larger than sqrt(2), since the return value of 473 * hypot cannot overflow if neither argument is greater in magnitude 474 * than 1/sqrt(2) of the maximum value of the return type. Likewise 475 * this determines the necessary threshold for using this method 476 * (however, actually use 1/2 instead as it is simpler). 477 * 478 * Dividing by E causes an insignificant loss of accuracy; however 479 * this method is still poor since it is uneccessarily slow. 480 */ 481 if (ax > DBL_MAX / 2) 482 return (CMPLX(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x))); 483 484 /* 485 * Avoid overflow when x or y is large. Avoid underflow when x or 486 * y is small. 487 */ 488 if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN) 489 return (CMPLX(log(hypot(x, y)), atan2(y, x))); 490 491 return (CMPLX(log(ax * ax + ay * ay) / 2, atan2(y, x))); 492 } 493 494 /* 495 * ================= 496 * | catanh, catan | 497 * ================= 498 */ 499 500 /* 501 * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow). 502 * Assumes x*x and y*y will not overflow. 503 * Assumes x and y are finite. 504 * Assumes y is non-negative. 505 * Assumes fabs(x) >= DBL_EPSILON. 506 */ 507 static inline double 508 sum_squares(double x, double y) 509 { 510 511 /* Avoid underflow when y is small. */ 512 if (y < SQRT_MIN) 513 return (x * x); 514 515 return (x * x + y * y); 516 } 517 518 /* 519 * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y). 520 * Assumes x and y are not NaN, and one of x and y is larger than 521 * RECIP_EPSILON. We avoid unwarranted underflow. It is important to not use 522 * the code creal(1/z), because the imaginary part may produce an unwanted 523 * underflow. 524 * This is only called in a context where inexact is always raised before 525 * the call, so no effort is made to avoid or force inexact. 526 */ 527 static inline double 528 real_part_reciprocal(double x, double y) 529 { 530 double scale; 531 uint32_t hx, hy; 532 int32_t ix, iy; 533 534 /* 535 * This code is inspired by the C99 document n1124.pdf, Section G.5.1, 536 * example 2. 537 */ 538 GET_HIGH_WORD(hx, x); 539 ix = hx & 0x7ff00000; 540 GET_HIGH_WORD(hy, y); 541 iy = hy & 0x7ff00000; 542 #define BIAS (DBL_MAX_EXP - 1) 543 /* XXX more guard digits are useful iff there is extra precision. */ 544 #define CUTOFF (DBL_MANT_DIG / 2 + 1) /* just half or 1 guard digit */ 545 if (ix - iy >= CUTOFF << 20 || isinf(x)) 546 return (1 / x); /* +-Inf -> +-0 is special */ 547 if (iy - ix >= CUTOFF << 20) 548 return (x / y / y); /* should avoid double div, but hard */ 549 if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20) 550 return (x / (x * x + y * y)); 551 scale = 1; 552 SET_HIGH_WORD(scale, 0x7ff00000 - ix); /* 2**(1-ilogb(x)) */ 553 x *= scale; 554 y *= scale; 555 return (x / (x * x + y * y) * scale); 556 } 557 558 /* 559 * catanh(z) = log((1+z)/(1-z)) / 2 560 * = log1p(4*x / |z-1|^2) / 4 561 * + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2 562 * 563 * catanh(z) = z + O(z^3) as z -> 0 564 * 565 * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3) as z -> infinity 566 * The above formula works for the real part as well, because 567 * Re(catanh(z)) = x/|z|^2 + O(x/z^4) 568 * as z -> infinity, uniformly in x 569 */ 570 double complex 571 catanh(double complex z) 572 { 573 double x, y, ax, ay, rx, ry; 574 575 x = creal(z); 576 y = cimag(z); 577 ax = fabs(x); 578 ay = fabs(y); 579 580 /* This helps handle many cases. */ 581 if (y == 0 && ax <= 1) 582 return (CMPLX(atanh(x), y)); 583 584 /* To ensure the same accuracy as atan(), and to filter out z = 0. */ 585 if (x == 0) 586 return (CMPLX(x, atan(y))); 587 588 if (isnan(x) || isnan(y)) { 589 /* catanh(+-Inf + I*NaN) = +-0 + I*NaN */ 590 if (isinf(x)) 591 return (CMPLX(copysign(0, x), y + y)); 592 /* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */ 593 if (isinf(y)) 594 return (CMPLX(copysign(0, x), 595 copysign(pio2_hi + pio2_lo, y))); 596 /* 597 * All other cases involving NaN return NaN + I*NaN. 598 * C99 leaves it optional whether to raise invalid if one of 599 * the arguments is not NaN, so we opt not to raise it. 600 */ 601 return (CMPLX(nan_mix(x, y), nan_mix(x, y))); 602 } 603 604 if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) 605 return (CMPLX(real_part_reciprocal(x, y), 606 copysign(pio2_hi + pio2_lo, y))); 607 608 if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) { 609 /* 610 * z = 0 was filtered out above. All other cases must raise 611 * inexact, but this is the only case that needs to do it 612 * explicitly. 613 */ 614 raise_inexact(); 615 return (z); 616 } 617 618 if (ax == 1 && ay < DBL_EPSILON) 619 rx = (m_ln2 - log(ay)) / 2; 620 else 621 rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4; 622 623 if (ax == 1) 624 ry = atan2(2, -ay) / 2; 625 else if (ay < DBL_EPSILON) 626 ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2; 627 else 628 ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2; 629 630 return (CMPLX(copysign(rx, x), copysign(ry, y))); 631 } 632 633 /* 634 * catan(z) = reverse(catanh(reverse(z))) 635 * where reverse(x + I*y) = y + I*x = I*conj(z). 636 */ 637 double complex 638 catan(double complex z) 639 { 640 double complex w = catanh(CMPLX(cimag(z), creal(z))); 641 642 return (CMPLX(cimag(w), creal(w))); 643 } 644 645 #if LDBL_MANT_DIG == 53 646 __weak_reference(cacosh, cacoshl); 647 __weak_reference(cacos, cacosl); 648 __weak_reference(casinh, casinhl); 649 __weak_reference(casin, casinl); 650 __weak_reference(catanh, catanhl); 651 __weak_reference(catan, catanl); 652 #endif 653