xref: /freebsd/lib/msun/src/catrig.c (revision 8bab661a3316d8bd9b9fbd11a3b4371b91507bd2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <complex.h>
33 #include <float.h>
34 
35 #include "math.h"
36 #include "math_private.h"
37 
38 #undef isinf
39 #define isinf(x)	(fabs(x) == INFINITY)
40 #undef isnan
41 #define isnan(x)	((x) != (x))
42 #define	raise_inexact()	do { volatile float junk __unused = 1 + tiny; } while(0)
43 #undef signbit
44 #define signbit(x)	(__builtin_signbit(x))
45 
46 /* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */
47 static const double
48 A_crossover =		10, /* Hull et al suggest 1.5, but 10 works better */
49 B_crossover =		0.6417,			/* suggested by Hull et al */
50 FOUR_SQRT_MIN =		0x1p-509,		/* >= 4 * sqrt(DBL_MIN) */
51 QUARTER_SQRT_MAX =	0x1p509,		/* <= sqrt(DBL_MAX) / 4 */
52 m_e =			2.7182818284590452e0,	/*  0x15bf0a8b145769.0p-51 */
53 m_ln2 =			6.9314718055994531e-1,	/*  0x162e42fefa39ef.0p-53 */
54 pio2_hi =		1.5707963267948966e0,	/*  0x1921fb54442d18.0p-52 */
55 RECIP_EPSILON =		1 / DBL_EPSILON,
56 SQRT_3_EPSILON =	2.5809568279517849e-8,	/*  0x1bb67ae8584caa.0p-78 */
57 SQRT_6_EPSILON =	3.6500241499888571e-8,	/*  0x13988e1409212e.0p-77 */
58 SQRT_MIN =		0x1p-511;		/* >= sqrt(DBL_MIN) */
59 
60 static const volatile double
61 pio2_lo =		6.1232339957367659e-17;	/*  0x11a62633145c07.0p-106 */
62 static const volatile float
63 tiny =			0x1p-100;
64 
65 static double complex clog_for_large_values(double complex z);
66 
67 /*
68  * Testing indicates that all these functions are accurate up to 4 ULP.
69  * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh.
70  * The functions catan(h) are a little under 2 times slower than atanh.
71  *
72  * The code for casinh, casin, cacos, and cacosh comes first.  The code is
73  * rather complicated, and the four functions are highly interdependent.
74  *
75  * The code for catanh and catan comes at the end.  It is much simpler than
76  * the other functions, and the code for these can be disconnected from the
77  * rest of the code.
78  */
79 
80 /*
81  *			================================
82  *			| casinh, casin, cacos, cacosh |
83  *			================================
84  */
85 
86 /*
87  * The algorithm is very close to that in "Implementing the complex arcsine
88  * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
89  * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
90  * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
91  * http://dl.acm.org/citation.cfm?id=275324.
92  *
93  * Throughout we use the convention z = x + I*y.
94  *
95  * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B)
96  * where
97  * A = (|z+I| + |z-I|) / 2
98  * B = (|z+I| - |z-I|) / 2 = y/A
99  *
100  * These formulas become numerically unstable:
101  *   (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that
102  *       is, Re(casinh(z)) is close to 0);
103  *   (b) for Im(casinh(z)) when z is close to either of the intervals
104  *       [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is
105  *       close to PI/2).
106  *
107  * These numerical problems are overcome by defining
108  * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2
109  * Then if A < A_crossover, we use
110  *   log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1)))
111  *   A-1 = f(x, 1+y) + f(x, 1-y)
112  * and if B > B_crossover, we use
113  *   asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y)))
114  *   A-y = f(x, y+1) + f(x, y-1)
115  * where without loss of generality we have assumed that x and y are
116  * non-negative.
117  *
118  * Much of the difficulty comes because the intermediate computations may
119  * produce overflows or underflows.  This is dealt with in the paper by Hull
120  * et al by using exception handling.  We do this by detecting when
121  * computations risk underflow or overflow.  The hardest part is handling the
122  * underflows when computing f(a, b).
123  *
124  * Note that the function f(a, b) does not appear explicitly in the paper by
125  * Hull et al, but the idea may be found on pages 308 and 309.  Introducing the
126  * function f(a, b) allows us to concentrate many of the clever tricks in this
127  * paper into one function.
128  */
129 
130 /*
131  * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2.
132  * Pass hypot(a, b) as the third argument.
133  */
134 static inline double
135 f(double a, double b, double hypot_a_b)
136 {
137 	if (b < 0)
138 		return ((hypot_a_b - b) / 2);
139 	if (b == 0)
140 		return (a / 2);
141 	return (a * a / (hypot_a_b + b) / 2);
142 }
143 
144 /*
145  * All the hard work is contained in this function.
146  * x and y are assumed positive or zero, and less than RECIP_EPSILON.
147  * Upon return:
148  * rx = Re(casinh(z)) = -Im(cacos(y + I*x)).
149  * B_is_usable is set to 1 if the value of B is usable.
150  * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y.
151  * If returning sqrt_A2my2 has potential to result in an underflow, it is
152  * rescaled, and new_y is similarly rescaled.
153  */
154 static inline void
155 do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B,
156     double *sqrt_A2my2, double *new_y)
157 {
158 	double R, S, A; /* A, B, R, and S are as in Hull et al. */
159 	double Am1, Amy; /* A-1, A-y. */
160 
161 	R = hypot(x, y + 1);		/* |z+I| */
162 	S = hypot(x, y - 1);		/* |z-I| */
163 
164 	/* A = (|z+I| + |z-I|) / 2 */
165 	A = (R + S) / 2;
166 	/*
167 	 * Mathematically A >= 1.  There is a small chance that this will not
168 	 * be so because of rounding errors.  So we will make certain it is
169 	 * so.
170 	 */
171 	if (A < 1)
172 		A = 1;
173 
174 	if (A < A_crossover) {
175 		/*
176 		 * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y).
177 		 * rx = log1p(Am1 + sqrt(Am1*(A+1)))
178 		 */
179 		if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) {
180 			/*
181 			 * fp is of order x^2, and fm = x/2.
182 			 * A = 1 (inexactly).
183 			 */
184 			*rx = sqrt(x);
185 		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
186 			/*
187 			 * Underflow will not occur because
188 			 * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN
189 			 */
190 			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
191 			*rx = log1p(Am1 + sqrt(Am1 * (A + 1)));
192 		} else if (y < 1) {
193 			/*
194 			 * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and
195 			 * A = 1 (inexactly).
196 			 */
197 			*rx = x / sqrt((1 - y) * (1 + y));
198 		} else {		/* if (y > 1) */
199 			/*
200 			 * A-1 = y-1 (inexactly).
201 			 */
202 			*rx = log1p((y - 1) + sqrt((y - 1) * (y + 1)));
203 		}
204 	} else {
205 		*rx = log(A + sqrt(A * A - 1));
206 	}
207 
208 	*new_y = y;
209 
210 	if (y < FOUR_SQRT_MIN) {
211 		/*
212 		 * Avoid a possible underflow caused by y/A.  For casinh this
213 		 * would be legitimate, but will be picked up by invoking atan2
214 		 * later on.  For cacos this would not be legitimate.
215 		 */
216 		*B_is_usable = 0;
217 		*sqrt_A2my2 = A * (2 / DBL_EPSILON);
218 		*new_y = y * (2 / DBL_EPSILON);
219 		return;
220 	}
221 
222 	/* B = (|z+I| - |z-I|) / 2 = y/A */
223 	*B = y / A;
224 	*B_is_usable = 1;
225 
226 	if (*B > B_crossover) {
227 		*B_is_usable = 0;
228 		/*
229 		 * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1).
230 		 * sqrt_A2my2 = sqrt(Amy*(A+y))
231 		 */
232 		if (y == 1 && x < DBL_EPSILON / 128) {
233 			/*
234 			 * fp is of order x^2, and fm = x/2.
235 			 * A = 1 (inexactly).
236 			 */
237 			*sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2);
238 		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
239 			/*
240 			 * Underflow will not occur because
241 			 * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN
242 			 * and
243 			 * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN
244 			 */
245 			Amy = f(x, y + 1, R) + f(x, y - 1, S);
246 			*sqrt_A2my2 = sqrt(Amy * (A + y));
247 		} else if (y > 1) {
248 			/*
249 			 * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and
250 			 * A = y (inexactly).
251 			 *
252 			 * y < RECIP_EPSILON.  So the following
253 			 * scaling should avoid any underflow problems.
254 			 */
255 			*sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y /
256 			    sqrt((y + 1) * (y - 1));
257 			*new_y = y * (4 / DBL_EPSILON / DBL_EPSILON);
258 		} else {		/* if (y < 1) */
259 			/*
260 			 * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and
261 			 * A = 1 (inexactly).
262 			 */
263 			*sqrt_A2my2 = sqrt((1 - y) * (1 + y));
264 		}
265 	}
266 }
267 
268 /*
269  * casinh(z) = z + O(z^3)   as z -> 0
270  *
271  * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2)   as z -> infinity
272  * The above formula works for the imaginary part as well, because
273  * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3)
274  *    as z -> infinity, uniformly in y
275  */
276 double complex
277 casinh(double complex z)
278 {
279 	double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
280 	int B_is_usable;
281 	double complex w;
282 
283 	x = creal(z);
284 	y = cimag(z);
285 	ax = fabs(x);
286 	ay = fabs(y);
287 
288 	if (isnan(x) || isnan(y)) {
289 		/* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */
290 		if (isinf(x))
291 			return (CMPLX(x, y + y));
292 		/* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */
293 		if (isinf(y))
294 			return (CMPLX(y, x + x));
295 		/* casinh(NaN + I*0) = NaN + I*0 */
296 		if (y == 0)
297 			return (CMPLX(x + x, y));
298 		/*
299 		 * All other cases involving NaN return NaN + I*NaN.
300 		 * C99 leaves it optional whether to raise invalid if one of
301 		 * the arguments is not NaN, so we opt not to raise it.
302 		 */
303 		return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
304 	}
305 
306 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
307 		/* clog...() will raise inexact unless x or y is infinite. */
308 		if (signbit(x) == 0)
309 			w = clog_for_large_values(z) + m_ln2;
310 		else
311 			w = clog_for_large_values(-z) + m_ln2;
312 		return (CMPLX(copysign(creal(w), x), copysign(cimag(w), y)));
313 	}
314 
315 	/* Avoid spuriously raising inexact for z = 0. */
316 	if (x == 0 && y == 0)
317 		return (z);
318 
319 	/* All remaining cases are inexact. */
320 	raise_inexact();
321 
322 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
323 		return (z);
324 
325 	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
326 	if (B_is_usable)
327 		ry = asin(B);
328 	else
329 		ry = atan2(new_y, sqrt_A2my2);
330 	return (CMPLX(copysign(rx, x), copysign(ry, y)));
331 }
332 
333 /*
334  * casin(z) = reverse(casinh(reverse(z)))
335  * where reverse(x + I*y) = y + I*x = I*conj(z).
336  */
337 double complex
338 casin(double complex z)
339 {
340 	double complex w = casinh(CMPLX(cimag(z), creal(z)));
341 
342 	return (CMPLX(cimag(w), creal(w)));
343 }
344 
345 /*
346  * cacos(z) = PI/2 - casin(z)
347  * but do the computation carefully so cacos(z) is accurate when z is
348  * close to 1.
349  *
350  * cacos(z) = PI/2 - z + O(z^3)   as z -> 0
351  *
352  * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2)   as z -> infinity
353  * The above formula works for the real part as well, because
354  * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3)
355  *    as z -> infinity, uniformly in y
356  */
357 double complex
358 cacos(double complex z)
359 {
360 	double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
361 	int sx, sy;
362 	int B_is_usable;
363 	double complex w;
364 
365 	x = creal(z);
366 	y = cimag(z);
367 	sx = signbit(x);
368 	sy = signbit(y);
369 	ax = fabs(x);
370 	ay = fabs(y);
371 
372 	if (isnan(x) || isnan(y)) {
373 		/* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */
374 		if (isinf(x))
375 			return (CMPLX(y + y, -INFINITY));
376 		/* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */
377 		if (isinf(y))
378 			return (CMPLX(x + x, -y));
379 		/* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */
380 		if (x == 0)
381 			return (CMPLX(pio2_hi + pio2_lo, y + y));
382 		/*
383 		 * All other cases involving NaN return NaN + I*NaN.
384 		 * C99 leaves it optional whether to raise invalid if one of
385 		 * the arguments is not NaN, so we opt not to raise it.
386 		 */
387 		return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
388 	}
389 
390 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
391 		/* clog...() will raise inexact unless x or y is infinite. */
392 		w = clog_for_large_values(z);
393 		rx = fabs(cimag(w));
394 		ry = creal(w) + m_ln2;
395 		if (sy == 0)
396 			ry = -ry;
397 		return (CMPLX(rx, ry));
398 	}
399 
400 	/* Avoid spuriously raising inexact for z = 1. */
401 	if (x == 1 && y == 0)
402 		return (CMPLX(0, -y));
403 
404 	/* All remaining cases are inexact. */
405 	raise_inexact();
406 
407 	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
408 		return (CMPLX(pio2_hi - (x - pio2_lo), -y));
409 
410 	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
411 	if (B_is_usable) {
412 		if (sx == 0)
413 			rx = acos(B);
414 		else
415 			rx = acos(-B);
416 	} else {
417 		if (sx == 0)
418 			rx = atan2(sqrt_A2mx2, new_x);
419 		else
420 			rx = atan2(sqrt_A2mx2, -new_x);
421 	}
422 	if (sy == 0)
423 		ry = -ry;
424 	return (CMPLX(rx, ry));
425 }
426 
427 /*
428  * cacosh(z) = I*cacos(z) or -I*cacos(z)
429  * where the sign is chosen so Re(cacosh(z)) >= 0.
430  */
431 double complex
432 cacosh(double complex z)
433 {
434 	double complex w;
435 	double rx, ry;
436 
437 	w = cacos(z);
438 	rx = creal(w);
439 	ry = cimag(w);
440 	/* cacosh(NaN + I*NaN) = NaN + I*NaN */
441 	if (isnan(rx) && isnan(ry))
442 		return (CMPLX(ry, rx));
443 	/* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */
444 	/* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */
445 	if (isnan(rx))
446 		return (CMPLX(fabs(ry), rx));
447 	/* cacosh(0 + I*NaN) = NaN + I*NaN */
448 	if (isnan(ry))
449 		return (CMPLX(ry, ry));
450 	return (CMPLX(fabs(ry), copysign(rx, cimag(z))));
451 }
452 
453 /*
454  * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON.
455  */
456 static double complex
457 clog_for_large_values(double complex z)
458 {
459 	double x, y;
460 	double ax, ay, t;
461 
462 	x = creal(z);
463 	y = cimag(z);
464 	ax = fabs(x);
465 	ay = fabs(y);
466 	if (ax < ay) {
467 		t = ax;
468 		ax = ay;
469 		ay = t;
470 	}
471 
472 	/*
473 	 * Avoid overflow in hypot() when x and y are both very large.
474 	 * Divide x and y by E, and then add 1 to the logarithm.  This
475 	 * depends on E being larger than sqrt(2), since the return value of
476 	 * hypot cannot overflow if neither argument is greater in magnitude
477 	 * than 1/sqrt(2) of the maximum value of the return type.  Likewise
478 	 * this determines the necessary threshold for using this method
479 	 * (however, actually use 1/2 instead as it is simpler).
480 	 *
481 	 * Dividing by E causes an insignificant loss of accuracy; however
482 	 * this method is still poor since it is uneccessarily slow.
483 	 */
484 	if (ax > DBL_MAX / 2)
485 		return (CMPLX(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x)));
486 
487 	/*
488 	 * Avoid overflow when x or y is large.  Avoid underflow when x or
489 	 * y is small.
490 	 */
491 	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
492 		return (CMPLX(log(hypot(x, y)), atan2(y, x)));
493 
494 	return (CMPLX(log(ax * ax + ay * ay) / 2, atan2(y, x)));
495 }
496 
497 /*
498  *				=================
499  *				| catanh, catan |
500  *				=================
501  */
502 
503 /*
504  * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow).
505  * Assumes x*x and y*y will not overflow.
506  * Assumes x and y are finite.
507  * Assumes y is non-negative.
508  * Assumes fabs(x) >= DBL_EPSILON.
509  */
510 static inline double
511 sum_squares(double x, double y)
512 {
513 
514 	/* Avoid underflow when y is small. */
515 	if (y < SQRT_MIN)
516 		return (x * x);
517 
518 	return (x * x + y * y);
519 }
520 
521 /*
522  * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y).
523  * Assumes x and y are not NaN, and one of x and y is larger than
524  * RECIP_EPSILON.  We avoid unwarranted underflow.  It is important to not use
525  * the code creal(1/z), because the imaginary part may produce an unwanted
526  * underflow.
527  * This is only called in a context where inexact is always raised before
528  * the call, so no effort is made to avoid or force inexact.
529  */
530 static inline double
531 real_part_reciprocal(double x, double y)
532 {
533 	double scale;
534 	uint32_t hx, hy;
535 	int32_t ix, iy;
536 
537 	/*
538 	 * This code is inspired by the C99 document n1124.pdf, Section G.5.1,
539 	 * example 2.
540 	 */
541 	GET_HIGH_WORD(hx, x);
542 	ix = hx & 0x7ff00000;
543 	GET_HIGH_WORD(hy, y);
544 	iy = hy & 0x7ff00000;
545 #define	BIAS	(DBL_MAX_EXP - 1)
546 /* XXX more guard digits are useful iff there is extra precision. */
547 #define	CUTOFF	(DBL_MANT_DIG / 2 + 1)	/* just half or 1 guard digit */
548 	if (ix - iy >= CUTOFF << 20 || isinf(x))
549 		return (1 / x);		/* +-Inf -> +-0 is special */
550 	if (iy - ix >= CUTOFF << 20)
551 		return (x / y / y);	/* should avoid double div, but hard */
552 	if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20)
553 		return (x / (x * x + y * y));
554 	scale = 1;
555 	SET_HIGH_WORD(scale, 0x7ff00000 - ix);	/* 2**(1-ilogb(x)) */
556 	x *= scale;
557 	y *= scale;
558 	return (x / (x * x + y * y) * scale);
559 }
560 
561 /*
562  * catanh(z) = log((1+z)/(1-z)) / 2
563  *           = log1p(4*x / |z-1|^2) / 4
564  *             + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2
565  *
566  * catanh(z) = z + O(z^3)   as z -> 0
567  *
568  * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3)   as z -> infinity
569  * The above formula works for the real part as well, because
570  * Re(catanh(z)) = x/|z|^2 + O(x/z^4)
571  *    as z -> infinity, uniformly in x
572  */
573 double complex
574 catanh(double complex z)
575 {
576 	double x, y, ax, ay, rx, ry;
577 
578 	x = creal(z);
579 	y = cimag(z);
580 	ax = fabs(x);
581 	ay = fabs(y);
582 
583 	/* This helps handle many cases. */
584 	if (y == 0 && ax <= 1)
585 		return (CMPLX(atanh(x), y));
586 
587 	/* To ensure the same accuracy as atan(), and to filter out z = 0. */
588 	if (x == 0)
589 		return (CMPLX(x, atan(y)));
590 
591 	if (isnan(x) || isnan(y)) {
592 		/* catanh(+-Inf + I*NaN) = +-0 + I*NaN */
593 		if (isinf(x))
594 			return (CMPLX(copysign(0, x), y + y));
595 		/* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */
596 		if (isinf(y))
597 			return (CMPLX(copysign(0, x),
598 			    copysign(pio2_hi + pio2_lo, y)));
599 		/*
600 		 * All other cases involving NaN return NaN + I*NaN.
601 		 * C99 leaves it optional whether to raise invalid if one of
602 		 * the arguments is not NaN, so we opt not to raise it.
603 		 */
604 		return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
605 	}
606 
607 	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
608 		return (CMPLX(real_part_reciprocal(x, y),
609 		    copysign(pio2_hi + pio2_lo, y)));
610 
611 	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
612 		/*
613 		 * z = 0 was filtered out above.  All other cases must raise
614 		 * inexact, but this is the only case that needs to do it
615 		 * explicitly.
616 		 */
617 		raise_inexact();
618 		return (z);
619 	}
620 
621 	if (ax == 1 && ay < DBL_EPSILON)
622 		rx = (m_ln2 - log(ay)) / 2;
623 	else
624 		rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4;
625 
626 	if (ax == 1)
627 		ry = atan2(2, -ay) / 2;
628 	else if (ay < DBL_EPSILON)
629 		ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2;
630 	else
631 		ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
632 
633 	return (CMPLX(copysign(rx, x), copysign(ry, y)));
634 }
635 
636 /*
637  * catan(z) = reverse(catanh(reverse(z)))
638  * where reverse(x + I*y) = y + I*x = I*conj(z).
639  */
640 double complex
641 catan(double complex z)
642 {
643 	double complex w = catanh(CMPLX(cimag(z), creal(z)));
644 
645 	return (CMPLX(cimag(w), creal(w)));
646 }
647 
648 #if LDBL_MANT_DIG == 53
649 __weak_reference(cacosh, cacoshl);
650 __weak_reference(cacos, cacosl);
651 __weak_reference(casinh, casinhl);
652 __weak_reference(casin, casinl);
653 __weak_reference(catanh, catanhl);
654 __weak_reference(catan, catanl);
655 #endif
656