xref: /freebsd/lib/msun/man/cacos.3 (revision d439598dd0d341b0c0b77151ba904e09c42f8421)
1.\" Copyright (c) 2013 David Schultz <das@FreeBSD.org>
2.\" All rights reserved.
3.\"
4.\" Redistribution and use in source and binary forms, with or without
5.\" modification, are permitted provided that the following conditions
6.\" are met:
7.\" 1. Redistributions of source code must retain the above copyright
8.\"    notice, this list of conditions and the following disclaimer.
9.\" 2. Redistributions in binary form must reproduce the above copyright
10.\"    notice, this list of conditions and the following disclaimer in the
11.\"    documentation and/or other materials provided with the distribution.
12.\"
13.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23.\" SUCH DAMAGE.
24.\"
25.Dd February 15, 2017
26.Dt CACOS 3
27.Os
28.Sh NAME
29.Nm cacos ,
30.Nm cacosf ,
31.Nm cacosl ,
32.Nm cacosh ,
33.Nm cacoshf ,
34.Nm cacoshl ,
35.Nm casin ,
36.Nm casinf ,
37.Nm casinl ,
38.Nm casinh ,
39.Nm casinhf ,
40.Nm casinhl ,
41.Nm catan  ,
42.Nm catanf ,
43.Nm catanl ,
44.Nm catanh ,
45.Nm catanhf ,
46.Nm catanhl
47.Nd complex inverse trigonometric and hyperbolic functions
48.Sh LIBRARY
49.Lb libm
50.Sh SYNOPSIS
51.In complex.h
52.Ft double complex
53.Fn cacos "double complex z"
54.Ft float complex
55.Fn cacosf "float complex z"
56.Ft long double complex
57.Fn cacosl "long double complex z"
58.Ft double complex
59.Fn cacosh "double complex z"
60.Ft float complex
61.Fn cacoshf "float complex z"
62.Ft long double complex
63.Fn cacoshl "long double complex z"
64.Ft double complex
65.Fn casin "double complex z"
66.Ft float complex
67.Fn casinf "float complex z"
68.Ft long double complex
69.Fn casinl "long double complex z"
70.Ft double complex
71.Fn casinh "double complex z"
72.Ft float complex
73.Fn casinhf "float complex z"
74.Ft long double complex
75.Fn casinhl "long double complex z"
76.Ft double complex
77.Fn catan "double complex z"
78.Ft float complex
79.Fn catanf "float complex z"
80.Ft long double complex
81.Fn catanl "long double complex z"
82.Ft double complex
83.Fn catanh "double complex z"
84.Ft float complex
85.Fn catanhf "float complex z"
86.Ft long double complex
87.Fn catanhl "long double complex z"
88.Sh DESCRIPTION
89The
90.Fn cacos ,
91.Fn casin ,
92and
93.Fn catan
94functions compute the principal value of the inverse cosine, sine,
95and tangent of the complex number
96.Fa z ,
97respectively.
98The
99.Fn cacosh ,
100.Fn casinh ,
101and
102.Fn catanh
103functions compute the principal value of the inverse hyperbolic
104cosine, sine, and tangent.
105The
106.Fn cacosf ,
107.Fn casinf ,
108.Fn catanf
109.Fn cacoshf ,
110.Fn casinhf ,
111and
112.Fn catanhf
113functions perform the same operations in
114.Fa float
115precision.
116The
117.Fn cacosl ,
118.Fn casinl ,
119.Fn catanl
120.Fn cacoshl ,
121.Fn casinhl ,
122and
123.Fn catanhl
124functions perform the same operations in
125.Fa long double
126precision.
127.Pp
128.ds Un \[cu]
129There is no universal convention for defining the principal values of
130these functions.
131The following table gives the branch cuts, and the
132corresponding ranges for the return values, adopted by the C language.
133.Bl -column ".Sy Function" ".Sy (-\*(If*I, -I) \*(Un (I, \*(If*I)" ".Sy [-\*(Pi/2*I, \*(Pi/2*I]"
134.It Sy Function Ta Sy Branch Cut(s) Ta Sy Range
135.It cacos Ta (-\*(If, -1) \*(Un (1, \*(If) Ta [0, \*(Pi]
136.It casin Ta (-\*(If, -1) \*(Un (1, \*(If) Ta [-\*(Pi/2, \*(Pi/2]
137.It catan Ta (-\*(If*I, -I) \*(Un (I, \*(If*I) Ta [-\*(Pi/2, \*(Pi/2]
138.It cacosh Ta (-\*(If, 1) Ta [-\*(Pi*I, \*(Pi*I]
139.It casinh Ta (-\*(If*I, -I) \*(Un (I, \*(If*I) Ta [-\*(Pi/2*I, \*(Pi/2*I]
140.It catanh Ta (-\*(If, -1) \*(Un (1, \*(If) Ta [-\*(Pi/2*I, \*(Pi/2*I]
141.El
142.Sh SEE ALSO
143.Xr ccos 3 ,
144.Xr ccosh 3 ,
145.Xr complex 3 ,
146.Xr cos 3 ,
147.Xr math 3 ,
148.Xr sin 3 ,
149.Xr tan 3
150.Sh STANDARDS
151These functions conform to
152.St -isoC-99 .
153