xref: /freebsd/lib/msun/man/cacos.3 (revision 6829dae12bb055451fa467da4589c43bd03b1e64)
1.\" Copyright (c) 2013 David Schultz <das@FreeBSD.org>
2.\" All rights reserved.
3.\"
4.\" Redistribution and use in source and binary forms, with or without
5.\" modification, are permitted provided that the following conditions
6.\" are met:
7.\" 1. Redistributions of source code must retain the above copyright
8.\"    notice, this list of conditions and the following disclaimer.
9.\" 2. Redistributions in binary form must reproduce the above copyright
10.\"    notice, this list of conditions and the following disclaimer in the
11.\"    documentation and/or other materials provided with the distribution.
12.\"
13.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23.\" SUCH DAMAGE.
24.\"
25.\" $FreeBSD$
26.\"
27.Dd February 15, 2017
28.Dt CACOS 3
29.Os
30.Sh NAME
31.Nm cacos ,
32.Nm cacosf ,
33.Nm cacosl ,
34.Nm cacosh ,
35.Nm cacoshf ,
36.Nm cacoshl ,
37.Nm casin ,
38.Nm casinf ,
39.Nm casinl ,
40.Nm casinh ,
41.Nm casinhf ,
42.Nm casinhl ,
43.Nm catan  ,
44.Nm catanf ,
45.Nm catanl ,
46.Nm catanh ,
47.Nm catanhf ,
48.Nm catanhl
49.Nd complex inverse trigonometric and hyperbolic functions
50.Sh LIBRARY
51.Lb libm
52.Sh SYNOPSIS
53.In complex.h
54.Ft double complex
55.Fn cacos "double complex z"
56.Ft float complex
57.Fn cacosf "float complex z"
58.Ft long double complex
59.Fn cacosl "long double complex z"
60.Ft double complex
61.Fn cacosh "double complex z"
62.Ft float complex
63.Fn cacoshf "float complex z"
64.Ft long double complex
65.Fn cacoshl "long double complex z"
66.Ft double complex
67.Fn casin "double complex z"
68.Ft float complex
69.Fn casinf "float complex z"
70.Ft long double complex
71.Fn casinl "long double complex z"
72.Ft double complex
73.Fn casinh "double complex z"
74.Ft float complex
75.Fn casinhf "float complex z"
76.Ft long double complex
77.Fn casinhl "long double complex z"
78.Ft double complex
79.Fn catan "double complex z"
80.Ft float complex
81.Fn catanf "float complex z"
82.Ft long double complex
83.Fn catanl "long double complex z"
84.Ft double complex
85.Fn catanh "double complex z"
86.Ft float complex
87.Fn catanhf "float complex z"
88.Ft long double complex
89.Fn catanhl "long double complex z"
90.Sh DESCRIPTION
91The
92.Fn cacos ,
93.Fn casin ,
94and
95.Fn catan
96functions compute the principal value of the inverse cosine, sine,
97and tangent of the complex number
98.Fa z ,
99respectively.
100The
101.Fn cacosh ,
102.Fn casinh ,
103and
104.Fn catanh
105functions compute the principal value of the inverse hyperbolic
106cosine, sine, and tangent.
107The
108.Fn cacosf ,
109.Fn casinf ,
110.Fn catanf
111.Fn cacoshf ,
112.Fn casinhf ,
113and
114.Fn catanhf
115functions perform the same operations in
116.Fa float
117precision.
118The
119.Fn cacosl ,
120.Fn casinl ,
121.Fn catanl
122.Fn cacoshl ,
123.Fn casinhl ,
124and
125.Fn catanhl
126functions perform the same operations in
127.Fa long double
128precision.
129.Pp
130.ds Un \[cu]
131There is no universal convention for defining the principal values of
132these functions.
133The following table gives the branch cuts, and the
134corresponding ranges for the return values, adopted by the C language.
135.Bl -column ".Sy Function" ".Sy (-\*(If*I, -I) \*(Un (I, \*(If*I)" ".Sy [-\*(Pi/2*I, \*(Pi/2*I]"
136.It Sy Function Ta Sy Branch Cut(s) Ta Sy Range
137.It cacos Ta (-\*(If, -1) \*(Un (1, \*(If) Ta [0, \*(Pi]
138.It casin Ta (-\*(If, -1) \*(Un (1, \*(If) Ta [-\*(Pi/2, \*(Pi/2]
139.It catan Ta (-\*(If*I, -I) \*(Un (I, \*(If*I) Ta [-\*(Pi/2, \*(Pi/2]
140.It cacosh Ta (-\*(If, 1) Ta [-\*(Pi*I, \*(Pi*I]
141.It casinh Ta (-\*(If*I, -I) \*(Un (I, \*(If*I) Ta [-\*(Pi/2*I, \*(Pi/2*I]
142.It catanh Ta (-\*(If, -1) \*(Un (1, \*(If) Ta [-\*(Pi/2*I, \*(Pi/2*I]
143.El
144.Sh SEE ALSO
145.Xr ccos 3 ,
146.Xr ccosh 3 ,
147.Xr complex 3 ,
148.Xr cos 3 ,
149.Xr math 3 ,
150.Xr sin 3 ,
151.Xr tan 3
152.Sh STANDARDS
153These functions conform to
154.St -isoC-99 .
155