xref: /freebsd/lib/msun/man/atan2.3 (revision 26a58599a09a6181e0f5abe624021865a0c23186)
1.\" Copyright (c) 1991 The Regents of the University of California.
2.\" All rights reserved.
3.\"
4.\" Redistribution and use in source and binary forms, with or without
5.\" modification, are permitted provided that the following conditions
6.\" are met:
7.\" 1. Redistributions of source code must retain the above copyright
8.\"    notice, this list of conditions and the following disclaimer.
9.\" 2. Redistributions in binary form must reproduce the above copyright
10.\"    notice, this list of conditions and the following disclaimer in the
11.\"    documentation and/or other materials provided with the distribution.
12.\" 3. Neither the name of the University nor the names of its contributors
13.\"    may be used to endorse or promote products derived from this software
14.\"    without specific prior written permission.
15.\"
16.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
17.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
20.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26.\" SUCH DAMAGE.
27.\"
28.\"     from: @(#)atan2.3	5.1 (Berkeley) 5/2/91
29.\"
30.Dd July 31, 2008
31.Dt ATAN2 3
32.Os
33.Sh NAME
34.Nm atan2 ,
35.Nm atan2f ,
36.Nm atan2l ,
37.Nm carg ,
38.Nm cargf ,
39.Nm cargl
40.Nd arc tangent and complex phase angle functions
41.Sh LIBRARY
42.Lb libm
43.Sh SYNOPSIS
44.In math.h
45.Ft double
46.Fn atan2 "double y" "double x"
47.Ft float
48.Fn atan2f "float y" "float x"
49.Ft long double
50.Fn atan2l "long double y" "long double x"
51.In complex.h
52.Ft double
53.Fn carg "double complex z"
54.Ft float
55.Fn cargf "float complex z"
56.Ft long double
57.Fn cargl "long double complex z"
58.Sh DESCRIPTION
59The
60.Fn atan2 ,
61.Fn atan2f ,
62and
63.Fn atan2l
64functions compute the principal value of the arc tangent of
65.Fa y/ Ns Fa x ,
66using the signs of both arguments to determine the quadrant of
67the return value.
68.Pp
69The
70.Fn carg ,
71.Fn cargf ,
72and
73.Fn cargl
74functions compute the complex argument (or phase angle) of
75.Fa z .
76The complex argument is the number theta such that
77.Li z = r * e^(I * theta) ,
78where
79.Li r = cabs(z) .
80The call
81.Li carg(z)
82is equivalent to
83.Li atan2(cimag(z), creal(z)) ,
84and similarly for
85.Fn cargf
86and
87.Fn cargl .
88.Sh RETURN VALUES
89The
90.Fn atan2 ,
91.Fn atan2f ,
92and
93.Fn atan2l
94functions, if successful,
95return the arc tangent of
96.Fa y/ Ns Fa x
97in the range
98.Bk -words
99.Bq \&- Ns \*(Pi , \&+ Ns \*(Pi
100.Ek
101radians.
102Here are some of the special cases:
103.Bl -column atan_(y,x)_:=____  sign(y)_(Pi_atan2(Xy_xX))___
104.It Fn atan2 y x No := Ta
105.Fn atan y/x Ta
106if
107.Fa x
108> 0,
109.It Ta sign( Ns Fa y Ns )*(\*(Pi -
110.Fn atan "\*(Bay/x\*(Ba" ) Ta
111if
112.Fa x
113< 0,
114.It Ta
115.No 0 Ta
116if x = y = 0, or
117.It Ta
118.Pf sign( Fa y Ns )*\*(Pi/2 Ta
119if
120.Fa x
121= 0 \(!=
122.Fa y .
123.El
124.Sh NOTES
125The function
126.Fn atan2
127defines "if x > 0,"
128.Fn atan2 0 0
129= 0 despite that previously
130.Fn atan2 0 0
131may have generated an error message.
132The reasons for assigning a value to
133.Fn atan2 0 0
134are these:
135.Bl -enum -offset indent
136.It
137Programs that test arguments to avoid computing
138.Fn atan2 0 0
139must be indifferent to its value.
140Programs that require it to be invalid are vulnerable
141to diverse reactions to that invalidity on diverse computer systems.
142.It
143The
144.Fn atan2
145function is used mostly to convert from rectangular (x,y)
146to polar
147.if n\
148(r,theta)
149.if t\
150(r,\(*h)
151coordinates that must satisfy x =
152.if n\
153r\(**cos theta
154.if t\
155r\(**cos\(*h
156and y =
157.if n\
158r\(**sin theta.
159.if t\
160r\(**sin\(*h.
161These equations are satisfied when (x=0,y=0)
162is mapped to
163.if n \
164(r=0,theta=0).
165.if t \
166(r=0,\(*h=0).
167In general, conversions to polar coordinates
168should be computed thus:
169.Bd -unfilled -offset indent
170.if n \{\
171r	:= hypot(x,y);  ... := sqrt(x\(**x+y\(**y)
172theta	:= atan2(y,x).
173.\}
174.if t \{\
175r	:= hypot(x,y);  ... := \(sr(x\u\s82\s10\d+y\u\s82\s10\d)
176\(*h	:= atan2(y,x).
177.\}
178.Ed
179.It
180The foregoing formulas need not be altered to cope in a
181reasonable way with signed zeros and infinities
182on a machine that conforms to
183.Tn IEEE 754 ;
184the versions of
185.Xr hypot 3
186and
187.Fn atan2
188provided for
189such a machine are designed to handle all cases.
190That is why
191.Fn atan2 \(+-0 \-0
192= \(+-\*(Pi
193for instance.
194In general the formulas above are equivalent to these:
195.Bd -unfilled -offset indent
196.if n \
197r := sqrt(x\(**x+y\(**y); if r = 0 then x := copysign(1,x);
198.if t \
199r := \(sr(x\(**x+y\(**y);\0\0if r = 0 then x := copysign(1,x);
200.Ed
201.El
202.Sh SEE ALSO
203.Xr acos 3 ,
204.Xr asin 3 ,
205.Xr atan 3 ,
206.Xr cabs 3 ,
207.Xr cos 3 ,
208.Xr cosh 3 ,
209.Xr math 3 ,
210.Xr sin 3 ,
211.Xr sinh 3 ,
212.Xr tan 3 ,
213.Xr tanh 3
214.Sh STANDARDS
215The
216.Fn atan2 ,
217.Fn atan2f ,
218.Fn atan2l ,
219.Fn carg ,
220.Fn cargf ,
221and
222.Fn cargl
223functions conform to
224.St -isoC-99 .
225