xref: /freebsd/lib/msun/ld80/s_tanpil.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*-
2  * Copyright (c) 2017, 2023 Steven G. Kargl
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * See ../src/s_tanpi.c for implementation details.
29  */
30 
31 #ifdef __i386__
32 #include <ieeefp.h>
33 #endif
34 #include <stdint.h>
35 
36 #include "fpmath.h"
37 #include "math.h"
38 #include "math_private.h"
39 
40 static const double
41 pi_hi =  3.1415926814079285e+00,	/* 0x400921fb 0x58000000 */
42 pi_lo = -2.7818135228334233e-08;	/* 0xbe5dde97 0x3dcb3b3a */
43 
44 static inline long double
45 __kernel_tanpil(long double x)
46 {
47 	long double hi, lo, t;
48 
49 	if (x < 0.25) {
50 		hi = (float)x;
51 		lo = x - hi;
52 		lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
53 		hi *= pi_hi;
54 		_2sumF(hi, lo);
55 		t = __kernel_tanl(hi, lo, -1);
56 	} else if (x > 0.25) {
57 		x = 0.5 - x;
58 		hi = (float)x;
59 		lo = x - hi;
60 		lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
61 		hi *= pi_hi;
62 		_2sumF(hi, lo);
63 		t = - __kernel_tanl(hi, lo, 1);
64 	} else
65 		t = 1;
66 
67 	return (t);
68 }
69 
70 volatile static const double vzero = 0;
71 
72 long double
73 tanpil(long double x)
74 {
75 	long double ax, hi, lo, odd, t;
76 	uint64_t lx, m;
77 	uint32_t j0;
78 	uint16_t hx, ix;
79 
80 	EXTRACT_LDBL80_WORDS(hx, lx, x);
81 	ix = hx & 0x7fff;
82 	INSERT_LDBL80_WORDS(ax, ix, lx);
83 
84 	ENTERI();
85 
86 	if (ix < 0x3fff) {			/* |x| < 1 */
87 		if (ix < 0x3ffe) {		/* |x| < 0.5 */
88 			if (ix < 0x3fdd) {	/* |x| < 0x1p-34 */
89 				if (x == 0)
90 					RETURNI(x);
91 				INSERT_LDBL80_WORDS(hi, hx,
92 				    lx & 0xffffffff00000000ull);
93 				hi *= 0x1p63L;
94 				lo = x * 0x1p63L - hi;
95 				t = (pi_lo + pi_hi) * lo + pi_lo * hi +
96 				    pi_hi * hi;
97 				RETURNI(t * 0x1p-63L);
98 			}
99 			t = __kernel_tanpil(ax);
100 		} else if (ax == 0.5)
101 			t = 1 / vzero;
102 		else
103 			t = -__kernel_tanpil(1 - ax);
104 		RETURNI((hx & 0x8000) ? -t : t);
105 	}
106 
107 	if (ix < 0x403e) {			/* 1 <= |x| < 0x1p63 */
108 		FFLOORL80(x, j0, ix, lx);	/* Integer part of ax. */
109 		odd = (uint64_t)x & 1 ? -1 : 1;
110 		ax -= x;
111 		EXTRACT_LDBL80_WORDS(ix, lx, ax);
112 
113 		if (ix < 0x3ffe)		/* |x| < 0.5 */
114 			t = ix == 0 ? copysignl(0, odd) : __kernel_tanpil(ax);
115 		else if (ax == 0.5L)
116 			t = odd / vzero;
117 		else
118 			t = -__kernel_tanpil(1 - ax);
119 		RETURNI((hx & 0x8000) ? -t : t);
120 	}
121 
122 	/* x = +-inf or nan. */
123 	if (ix >= 0x7fff)
124 		RETURNI(vzero / vzero);
125 
126 	/*
127 	 * For 0x1p63 <= |x| < 0x1p64 need to determine if x is an even
128 	 * or odd integer to set t = +0 or -0.
129 	 * For |x| >= 0x1p64, it is always an even integer, so t = 0.
130 	 */
131 	t = ix >= 0x403f ? 0 : (copysignl(0, (lx & 1) ? -1 : 1));
132 	RETURNI((hx & 0x8000) ? -t : t);
133 }
134