xref: /freebsd/lib/msun/ld80/s_expl.c (revision 4436b51dff5736e74da464946049ea6899a88938)
1 /*-
2  * Copyright (c) 2009-2013 Steven G. Kargl
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * Optimized by Bruce D. Evans.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /**
33  * Compute the exponential of x for Intel 80-bit format.  This is based on:
34  *
35  *   PTP Tang, "Table-driven implementation of the exponential function
36  *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
37  *   144-157 (1989).
38  *
39  * where the 32 table entries have been expanded to INTERVALS (see below).
40  */
41 
42 #include <float.h>
43 
44 #ifdef __i386__
45 #include <ieeefp.h>
46 #endif
47 
48 #include "fpmath.h"
49 #include "math.h"
50 #include "math_private.h"
51 #include "k_expl.h"
52 
53 /* XXX Prevent compilers from erroneously constant folding these: */
54 static const volatile long double
55 huge = 0x1p10000L,
56 tiny = 0x1p-10000L;
57 
58 static const long double
59 twom10000 = 0x1p-10000L;
60 
61 static const union IEEEl2bits
62 /* log(2**16384 - 0.5) rounded towards zero: */
63 /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
64 o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13,  11356.5234062941439488L),
65 #define o_threshold	 (o_thresholdu.e)
66 /* log(2**(-16381-64-1)) rounded towards zero: */
67 u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
68 #define u_threshold	 (u_thresholdu.e)
69 
70 long double
71 expl(long double x)
72 {
73 	union IEEEl2bits u;
74 	long double hi, lo, t, twopk;
75 	int k;
76 	uint16_t hx, ix;
77 
78 	DOPRINT_START(&x);
79 
80 	/* Filter out exceptional cases. */
81 	u.e = x;
82 	hx = u.xbits.expsign;
83 	ix = hx & 0x7fff;
84 	if (ix >= BIAS + 13) {		/* |x| >= 8192 or x is NaN */
85 		if (ix == BIAS + LDBL_MAX_EXP) {
86 			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
87 				RETURNP(-1 / x);
88 			RETURNP(x + x);	/* x is +Inf, +NaN or unsupported */
89 		}
90 		if (x > o_threshold)
91 			RETURNP(huge * huge);
92 		if (x < u_threshold)
93 			RETURNP(tiny * tiny);
94 	} else if (ix < BIAS - 75) {	/* |x| < 0x1p-75 (includes pseudos) */
95 		RETURN2P(1, x);		/* 1 with inexact iff x != 0 */
96 	}
97 
98 	ENTERI();
99 
100 	twopk = 1;
101 	__k_expl(x, &hi, &lo, &k);
102 	t = SUM2P(hi, lo);
103 
104 	/* Scale by 2**k. */
105 	if (k >= LDBL_MIN_EXP) {
106 		if (k == LDBL_MAX_EXP)
107 			RETURNI(t * 2 * 0x1p16383L);
108 		SET_LDBL_EXPSIGN(twopk, BIAS + k);
109 		RETURNI(t * twopk);
110 	} else {
111 		SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
112 		RETURNI(t * twopk * twom10000);
113 	}
114 }
115 
116 /**
117  * Compute expm1l(x) for Intel 80-bit format.  This is based on:
118  *
119  *   PTP Tang, "Table-driven implementation of the Expm1 function
120  *   in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
121  *   211-222 (1992).
122  */
123 
124 /*
125  * Our T1 and T2 are chosen to be approximately the points where method
126  * A and method B have the same accuracy.  Tang's T1 and T2 are the
127  * points where method A's accuracy changes by a full bit.  For Tang,
128  * this drop in accuracy makes method A immediately less accurate than
129  * method B, but our larger INTERVALS makes method A 2 bits more
130  * accurate so it remains the most accurate method significantly
131  * closer to the origin despite losing the full bit in our extended
132  * range for it.
133  */
134 static const double
135 T1 = -0.1659,				/* ~-30.625/128 * log(2) */
136 T2 =  0.1659;				/* ~30.625/128 * log(2) */
137 
138 /*
139  * Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
140  * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
141  *
142  * XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
143  * but unlike for ld128 we can't drop any terms.
144  */
145 static const union IEEEl2bits
146 B3 = LD80C(0xaaaaaaaaaaaaaaab, -3,  1.66666666666666666671e-1L),
147 B4 = LD80C(0xaaaaaaaaaaaaaaac, -5,  4.16666666666666666712e-2L);
148 
149 static const double
150 B5  =  8.3333333333333245e-3,		/*  0x1.111111111110cp-7 */
151 B6  =  1.3888888888888861e-3,		/*  0x1.6c16c16c16c0ap-10 */
152 B7  =  1.9841269841532042e-4,		/*  0x1.a01a01a0319f9p-13 */
153 B8  =  2.4801587302069236e-5,		/*  0x1.a01a01a03cbbcp-16 */
154 B9  =  2.7557316558468562e-6,		/*  0x1.71de37fd33d67p-19 */
155 B10 =  2.7557315829785151e-7,		/*  0x1.27e4f91418144p-22 */
156 B11 =  2.5063168199779829e-8,		/*  0x1.ae94fabdc6b27p-26 */
157 B12 =  2.0887164654459567e-9;		/*  0x1.1f122d6413fe1p-29 */
158 
159 long double
160 expm1l(long double x)
161 {
162 	union IEEEl2bits u, v;
163 	long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
164 	long double x_lo, x2, z;
165 	long double x4;
166 	int k, n, n2;
167 	uint16_t hx, ix;
168 
169 	DOPRINT_START(&x);
170 
171 	/* Filter out exceptional cases. */
172 	u.e = x;
173 	hx = u.xbits.expsign;
174 	ix = hx & 0x7fff;
175 	if (ix >= BIAS + 6) {		/* |x| >= 64 or x is NaN */
176 		if (ix == BIAS + LDBL_MAX_EXP) {
177 			if (hx & 0x8000)  /* x is -Inf, -NaN or unsupported */
178 				RETURNP(-1 / x - 1);
179 			RETURNP(x + x);	/* x is +Inf, +NaN or unsupported */
180 		}
181 		if (x > o_threshold)
182 			RETURNP(huge * huge);
183 		/*
184 		 * expm1l() never underflows, but it must avoid
185 		 * unrepresentable large negative exponents.  We used a
186 		 * much smaller threshold for large |x| above than in
187 		 * expl() so as to handle not so large negative exponents
188 		 * in the same way as large ones here.
189 		 */
190 		if (hx & 0x8000)	/* x <= -64 */
191 			RETURN2P(tiny, -1);	/* good for x < -65ln2 - eps */
192 	}
193 
194 	ENTERI();
195 
196 	if (T1 < x && x < T2) {
197 		if (ix < BIAS - 74) {	/* |x| < 0x1p-74 (includes pseudos) */
198 			/* x (rounded) with inexact if x != 0: */
199 			RETURNPI(x == 0 ? x :
200 			    (0x1p100 * x + fabsl(x)) * 0x1p-100);
201 		}
202 
203 		x2 = x * x;
204 		x4 = x2 * x2;
205 		q = x4 * (x2 * (x4 *
206 		    /*
207 		     * XXX the number of terms is no longer good for
208 		     * pairwise grouping of all except B3, and the
209 		     * grouping is no longer from highest down.
210 		     */
211 		    (x2 *            B12  + (x * B11 + B10)) +
212 		    (x2 * (x * B9 +  B8) +  (x * B7 +  B6))) +
213 			  (x * B5 +  B4.e)) + x2 * x * B3.e;
214 
215 		x_hi = (float)x;
216 		x_lo = x - x_hi;
217 		hx2_hi = x_hi * x_hi / 2;
218 		hx2_lo = x_lo * (x + x_hi) / 2;
219 		if (ix >= BIAS - 7)
220 			RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
221 		else
222 			RETURN2PI(x, hx2_lo + q + hx2_hi);
223 	}
224 
225 	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
226 	/* Use a specialized rint() to get fn.  Assume round-to-nearest. */
227 	fn = x * INV_L + 0x1.8p63 - 0x1.8p63;
228 #if defined(HAVE_EFFICIENT_IRINTL)
229 	n = irintl(fn);
230 #elif defined(HAVE_EFFICIENT_IRINT)
231 	n = irint(fn);
232 #else
233 	n = (int)fn;
234 #endif
235 	n2 = (unsigned)n % INTERVALS;
236 	k = n >> LOG2_INTERVALS;
237 	r1 = x - fn * L1;
238 	r2 = fn * -L2;
239 	r = r1 + r2;
240 
241 	/* Prepare scale factor. */
242 	v.e = 1;
243 	v.xbits.expsign = BIAS + k;
244 	twopk = v.e;
245 
246 	/*
247 	 * Evaluate lower terms of
248 	 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
249 	 */
250 	z = r * r;
251 	q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
252 
253 	t = (long double)tbl[n2].lo + tbl[n2].hi;
254 
255 	if (k == 0) {
256 		t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
257 		    tbl[n2].hi * r1);
258 		RETURNI(t);
259 	}
260 	if (k == -1) {
261 		t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
262 		    tbl[n2].hi * r1);
263 		RETURNI(t / 2);
264 	}
265 	if (k < -7) {
266 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
267 		RETURNI(t * twopk - 1);
268 	}
269 	if (k > 2 * LDBL_MANT_DIG - 1) {
270 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
271 		if (k == LDBL_MAX_EXP)
272 			RETURNI(t * 2 * 0x1p16383L - 1);
273 		RETURNI(t * twopk - 1);
274 	}
275 
276 	v.xbits.expsign = BIAS - k;
277 	twomk = v.e;
278 
279 	if (k > LDBL_MANT_DIG - 1)
280 		t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
281 	else
282 		t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
283 	RETURNI(t * twopk);
284 }
285