xref: /freebsd/lib/msun/ld80/k_sinl.c (revision 96950419f15510287080c557174e0d8409f06956)
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 /*
15  * ld80 version of k_sin.c.  See ../src/k_sin.c for most comments.
16  */
17 
18 #include "math_private.h"
19 
20 static const double
21 half =  0.5;
22 
23 /*
24  * Domain [-0.7854, 0.7854], range ~[-1.89e-22, 1.915e-22]
25  * |sin(x)/x - s(x)| < 2**-72.1
26  *
27  * See ../ld80/k_cosl.c for more details about the polynomial.
28  */
29 #if defined(__amd64__) || defined(__i386__)
30 /* Long double constants are slow on these arches, and broken on i386. */
31 static const volatile double
32 S1hi = -0.16666666666666666,		/* -0x15555555555555.0p-55 */
33 S1lo = -9.2563760475949941e-18;		/* -0x15580000000000.0p-109 */
34 #define	S1	((long double)S1hi + S1lo)
35 #else
36 static const long double
37 S1 = -0.166666666666666666671L;		/* -0xaaaaaaaaaaaaaaab.0p-66 */
38 #endif
39 
40 static const double
41 S2 =  0.0083333333333333332,		/*  0x11111111111111.0p-59 */
42 S3 = -0.00019841269841269427,		/* -0x1a01a01a019f81.0p-65 */
43 S4 =  0.0000027557319223597490,		/*  0x171de3a55560f7.0p-71 */
44 S5 = -0.000000025052108218074604,	/* -0x1ae64564f16cad.0p-78 */
45 S6 =  1.6059006598854211e-10,		/*  0x161242b90243b5.0p-85 */
46 S7 = -7.6429779983024564e-13,		/* -0x1ae42ebd1b2e00.0p-93 */
47 S8 =  2.6174587166648325e-15;		/*  0x179372ea0b3f64.0p-101 */
48 
49 long double
50 __kernel_sinl(long double x, long double y, int iy)
51 {
52 	long double z,r,v;
53 
54 	z	=  x*x;
55 	v	=  z*x;
56 	r	=  S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8)))));
57 	if(iy==0) return x+v*(S1+z*r);
58 	else      return x-((z*(half*y-v*r)-y)-v*S1);
59 }
60