1de336b0cSDavid Schultz /* From: @(#)k_cos.c 1.3 95/01/18 */ 2de336b0cSDavid Schultz /* 3de336b0cSDavid Schultz * ==================================================== 4de336b0cSDavid Schultz * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5de336b0cSDavid Schultz * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans. 6de336b0cSDavid Schultz * 7de336b0cSDavid Schultz * Developed at SunSoft, a Sun Microsystems, Inc. business. 8de336b0cSDavid Schultz * Permission to use, copy, modify, and distribute this 9de336b0cSDavid Schultz * software is freely granted, provided that this notice 10de336b0cSDavid Schultz * is preserved. 11de336b0cSDavid Schultz * ==================================================== 12de336b0cSDavid Schultz */ 13de336b0cSDavid Schultz 14de336b0cSDavid Schultz #include <sys/cdefs.h> 15de336b0cSDavid Schultz __FBSDID("$FreeBSD$"); 16de336b0cSDavid Schultz 17de336b0cSDavid Schultz /* 18de336b0cSDavid Schultz * ld80 version of k_cos.c. See ../src/k_cos.c for most comments. 19de336b0cSDavid Schultz */ 20de336b0cSDavid Schultz 21de336b0cSDavid Schultz #include "math_private.h" 22de336b0cSDavid Schultz 23de336b0cSDavid Schultz /* 24de336b0cSDavid Schultz * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]: 25de336b0cSDavid Schultz * |cos(x) - c(x)| < 2**-75.1 26de336b0cSDavid Schultz * 27de336b0cSDavid Schultz * The coefficients of c(x) were generated by a pari-gp script using 28de336b0cSDavid Schultz * a Remez algorithm that searches for the best higher coefficients 29de336b0cSDavid Schultz * after rounding leading coefficients to a specified precision. 30de336b0cSDavid Schultz * 31de336b0cSDavid Schultz * Simpler methods like Chebyshev or basic Remez barely suffice for 32de336b0cSDavid Schultz * cos() in 64-bit precision, because we want the coefficient of x^2 33de336b0cSDavid Schultz * to be precisely -0.5 so that multiplying by it is exact, and plain 34de336b0cSDavid Schultz * rounding of the coefficients of a good polynomial approximation only 35de336b0cSDavid Schultz * gives this up to about 64-bit precision. Plain rounding also gives 36de336b0cSDavid Schultz * a mediocre approximation for the coefficient of x^4, but a rounding 37de336b0cSDavid Schultz * error of 0.5 ulps for this coefficient would only contribute ~0.01 38de336b0cSDavid Schultz * ulps to the final error, so this is unimportant. Rounding errors in 39de336b0cSDavid Schultz * higher coefficients are even less important. 40de336b0cSDavid Schultz * 41de336b0cSDavid Schultz * In fact, coefficients above the x^4 one only need to have 53-bit 42de336b0cSDavid Schultz * precision, and this is more efficient. We get this optimization 43de336b0cSDavid Schultz * almost for free from the complications needed to search for the best 44de336b0cSDavid Schultz * higher coefficients. 45de336b0cSDavid Schultz */ 46de336b0cSDavid Schultz static const double 47de336b0cSDavid Schultz one = 1.0; 48de336b0cSDavid Schultz 49de336b0cSDavid Schultz #if defined(__amd64__) || defined(__i386__) 50de336b0cSDavid Schultz /* Long double constants are slow on these arches, and broken on i386. */ 51de336b0cSDavid Schultz static const volatile double 52de336b0cSDavid Schultz C1hi = 0.041666666666666664, /* 0x15555555555555.0p-57 */ 53de336b0cSDavid Schultz C1lo = 2.2598839032744733e-18; /* 0x14d80000000000.0p-111 */ 54de336b0cSDavid Schultz #define C1 ((long double)C1hi + C1lo) 55de336b0cSDavid Schultz #else 56de336b0cSDavid Schultz static const long double 57de336b0cSDavid Schultz C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */ 58de336b0cSDavid Schultz #endif 59de336b0cSDavid Schultz 60de336b0cSDavid Schultz static const double 61de336b0cSDavid Schultz C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */ 62de336b0cSDavid Schultz C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */ 63de336b0cSDavid Schultz C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */ 64de336b0cSDavid Schultz C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */ 65de336b0cSDavid Schultz C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */ 66de336b0cSDavid Schultz C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */ 67de336b0cSDavid Schultz 68de336b0cSDavid Schultz long double 69de336b0cSDavid Schultz __kernel_cosl(long double x, long double y) 70de336b0cSDavid Schultz { 71de336b0cSDavid Schultz long double hz,z,r,w; 72de336b0cSDavid Schultz 73de336b0cSDavid Schultz z = x*x; 74de336b0cSDavid Schultz r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7)))))); 75de336b0cSDavid Schultz hz = 0.5*z; 76de336b0cSDavid Schultz w = one-hz; 77de336b0cSDavid Schultz return w + (((one-w)-hz) + (z*r-x*y)); 78de336b0cSDavid Schultz } 79