xref: /freebsd/lib/msun/ld80/b_tgammal.c (revision 2a58b312b62f908ec92311d1bd8536dbaeb8e55b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * The original code, FreeBSD's old svn r93211, contain the following
34  * attribution:
35  *
36  *    This code by P. McIlroy, Oct 1992;
37  *
38  *    The financial support of UUNET Communications Services is greatfully
39  *    acknowledged.
40  *
41  * bsdrc/b_tgamma.c converted to long double by Steven G. Kargl.
42  */
43 
44 /*
45  * See bsdsrc/t_tgamma.c for implementation details.
46  */
47 
48 #include <float.h>
49 
50 #if LDBL_MAX_EXP != 0x4000
51 #error "Unsupported long double format"
52 #endif
53 
54 #ifdef __i386__
55 #include <ieeefp.h>
56 #endif
57 
58 #include "fpmath.h"
59 #include "math.h"
60 #include "math_private.h"
61 
62 /* Used in b_log.c and below. */
63 struct Double {
64 	long double a;
65 	long double b;
66 };
67 
68 #include "b_logl.c"
69 #include "b_expl.c"
70 
71 static const double zero = 0.;
72 static const volatile double tiny = 1e-300;
73 /*
74  * x >= 6
75  *
76  * Use the asymptotic approximation (Stirling's formula) adjusted for
77  * equal-ripples:
78  *
79  * log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
80  *
81  * Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
82  * premature round-off.
83  *
84  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
85  */
86 
87 /*
88  * The following is a decomposition of 0.5 * (log(2*pi) - 1) into the
89  * first 12 bits in ln2pi_hi and the trailing 64 bits in ln2pi_lo.  The
90  * variables are clearly misnamed.
91  */
92 static const union IEEEl2bits
93 ln2pi_hiu = LD80C(0xd680000000000000,  -2,  4.18945312500000000000e-01L),
94 ln2pi_lou = LD80C(0xe379b414b596d687, -18, -6.77929532725821967032e-06L);
95 #define	ln2pi_hi	(ln2pi_hiu.e)
96 #define	ln2pi_lo	(ln2pi_lou.e)
97 
98 static const union IEEEl2bits
99     Pa0u = LD80C(0xaaaaaaaaaaaaaaaa,  -4,  8.33333333333333333288e-02L),
100     Pa1u = LD80C(0xb60b60b60b5fcd59,  -9, -2.77777777777776516326e-03L),
101     Pa2u = LD80C(0xd00d00cffbb47014, -11,  7.93650793635429639018e-04L),
102     Pa3u = LD80C(0x9c09c07c0805343e, -11, -5.95238087960599252215e-04L),
103     Pa4u = LD80C(0xdca8d31f8e6e5e8f, -11,  8.41749082509607342883e-04L),
104     Pa5u = LD80C(0xfb4d4289632f1638, -10, -1.91728055205541624556e-03L),
105     Pa6u = LD80C(0xd15a4ba04078d3f8,  -8,  6.38893788027752396194e-03L),
106     Pa7u = LD80C(0xe877283110bcad95,  -6, -2.83771309846297590312e-02L),
107     Pa8u = LD80C(0x8da97eed13717af8,  -3,  1.38341887683837576925e-01L),
108     Pa9u = LD80C(0xf093b1c1584e30ce,  -2, -4.69876818515470146031e-01L);
109 #define	Pa0	(Pa0u.e)
110 #define	Pa1	(Pa1u.e)
111 #define	Pa2	(Pa2u.e)
112 #define	Pa3	(Pa3u.e)
113 #define	Pa4	(Pa4u.e)
114 #define	Pa5	(Pa5u.e)
115 #define	Pa6	(Pa6u.e)
116 #define	Pa7	(Pa7u.e)
117 #define	Pa8	(Pa8u.e)
118 #define	Pa9	(Pa9u.e)
119 
120 static struct Double
121 large_gam(long double x)
122 {
123 	long double p, z, thi, tlo, xhi, xlo;
124 	long double logx;
125 	struct Double u;
126 
127 	z = 1 / (x * x);
128 	p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 +
129 	    z * (Pa6 + z * (Pa7 + z * (Pa8 + z * Pa9))))))));
130 	p = p / x;
131 
132 	u = __log__D(x);
133 	u.a -= 1;
134 
135 	/* Split (x - 0.5) in high and low parts. */
136 	x -= 0.5L;
137 	xhi = (float)x;
138 	xlo = x - xhi;
139 
140 	/* Compute  t = (x-.5)*(log(x)-1) in extra precision. */
141 	thi = xhi * u.a;
142 	tlo = xlo * u.a + x * u.b;
143 
144 	/* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
145 	tlo += ln2pi_lo;
146 	tlo += p;
147 	u.a = ln2pi_hi + tlo;
148 	u.a += thi;
149 	u.b = thi - u.a;
150 	u.b += ln2pi_hi;
151 	u.b += tlo;
152 	return (u);
153 }
154 /*
155  * Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
156  * [1.066.., 2.066..] accurate to 4.25e-19.
157  *
158  * Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
159  */
160 static const union IEEEl2bits
161     a0_hiu = LD80C(0xe2b6e4153a57746c,  -1, 8.85603194410888700265e-01L),
162     a0_lou = LD80C(0x851566d40f32c76d, -66, 1.40907742727049706207e-20L);
163 #define	a0_hi	(a0_hiu.e)
164 #define	a0_lo	(a0_lou.e)
165 
166 static const union IEEEl2bits
167 P0u = LD80C(0xdb629fb9bbdc1c1d,    -2,  4.28486815855585429733e-01L),
168 P1u = LD80C(0xe6f4f9f5641aa6be,    -3,  2.25543885805587730552e-01L),
169 P2u = LD80C(0xead1bd99fdaf7cc1,    -6,  2.86644652514293482381e-02L),
170 P3u = LD80C(0x9ccc8b25838ab1e0,    -8,  4.78512567772456362048e-03L),
171 P4u = LD80C(0x8f0c4383ef9ce72a,    -9,  2.18273781132301146458e-03L),
172 P5u = LD80C(0xe732ab2c0a2778da,   -13,  2.20487522485636008928e-04L),
173 P6u = LD80C(0xce70b27ca822b297,   -16,  2.46095923774929264284e-05L),
174 P7u = LD80C(0xa309e2e16fb63663,   -19,  2.42946473022376182921e-06L),
175 P8u = LD80C(0xaf9c110efb2c633d,   -23,  1.63549217667765869987e-07L),
176 Q1u = LD80C(0xd4d7422719f48f15,    -1,  8.31409582658993993626e-01L),
177 Q2u = LD80C(0xe13138ea404f1268,    -5, -5.49785826915643198508e-02L),
178 Q3u = LD80C(0xd1c6cc91989352c0,    -4, -1.02429960435139887683e-01L),
179 Q4u = LD80C(0xa7e9435a84445579,    -7,  1.02484853505908820524e-02L),
180 Q5u = LD80C(0x83c7c34db89b7bda,    -8,  4.02161632832052872697e-03L),
181 Q6u = LD80C(0xbed06bf6e1c14e5b,   -11, -7.27898206351223022157e-04L),
182 Q7u = LD80C(0xef05bf841d4504c0,   -18,  7.12342421869453515194e-06L),
183 Q8u = LD80C(0xf348d08a1ff53cb1,   -19,  3.62522053809474067060e-06L);
184 #define	P0	(P0u.e)
185 #define	P1	(P1u.e)
186 #define	P2	(P2u.e)
187 #define	P3	(P3u.e)
188 #define	P4	(P4u.e)
189 #define	P5	(P5u.e)
190 #define	P6	(P6u.e)
191 #define	P7	(P7u.e)
192 #define	P8	(P8u.e)
193 #define	Q1	(Q1u.e)
194 #define	Q2	(Q2u.e)
195 #define	Q3	(Q3u.e)
196 #define	Q4	(Q4u.e)
197 #define	Q5	(Q5u.e)
198 #define	Q6	(Q6u.e)
199 #define	Q7	(Q7u.e)
200 #define	Q8	(Q8u.e)
201 
202 static struct Double
203 ratfun_gam(long double z, long double c)
204 {
205 	long double p, q, thi, tlo;
206 	struct Double r;
207 
208 	q = 1  + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 +
209 	    z * (Q6 + z * (Q7 + z * Q8)))))));
210 	p = P0 + z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 +
211 	    z * (P6 + z * (P7 + z * P8)))))));
212 	p = p / q;
213 
214 	/* Split z into high and low parts. */
215 	thi = (float)z;
216 	tlo = (z - thi) + c;
217 	tlo *= (thi + z);
218 
219 	/* Split (z+c)^2 into high and low parts. */
220 	thi *= thi;
221 	q = thi;
222 	thi = (float)thi;
223 	tlo += (q - thi);
224 
225 	/* Split p/q into high and low parts. */
226 	r.a = (float)p;
227 	r.b = p - r.a;
228 
229 	tlo = tlo * p + thi * r.b + a0_lo;
230 	thi *= r.a;				/* t = (z+c)^2*(P/Q) */
231 	r.a = (float)(thi + a0_hi);
232 	r.b = ((a0_hi - r.a) + thi) + tlo;
233 	return (r);				/* r = a0 + t */
234 }
235 /*
236  * x < 6
237  *
238  * Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
239  * 2.066124].  Use a rational approximation centered at the minimum
240  * (x0+1) to ensure monotonicity.
241  *
242  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
243  * It also has correct monotonicity.
244  */
245 static const union IEEEl2bits
246   xm1u = LD80C(0xec5b0c6ad7c7edc3, -2, 4.61632144968362341254e-01L);
247 #define	x0	(xm1u.e)
248 
249 static const double
250     left = -0.3955078125;	/* left boundary for rat. approx */
251 
252 static long double
253 small_gam(long double x)
254 {
255 	long double t, y, ym1;
256 	struct Double yy, r;
257 
258 	y = x - 1;
259 
260 	if (y <= 1 + (left + x0)) {
261 		yy = ratfun_gam(y - x0, 0);
262 		return (yy.a + yy.b);
263 	}
264 
265 	r.a = (float)y;
266 	yy.a = r.a - 1;
267 	y = y - 1 ;
268 	r.b = yy.b = y - yy.a;
269 
270 	/* Argument reduction: G(x+1) = x*G(x) */
271 	for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) {
272 		t = r.a * yy.a;
273 		r.b = r.a * yy.b + y * r.b;
274 		r.a = (float)t;
275 		r.b += (t - r.a);
276 	}
277 
278 	/* Return r*tgamma(y). */
279 	yy = ratfun_gam(y - x0, 0);
280 	y = r.b * (yy.a + yy.b) + r.a * yy.b;
281 	y += yy.a * r.a;
282 	return (y);
283 }
284 /*
285  * Good on (0, 1+x0+left].  Accurate to 1 ulp.
286  */
287 static long double
288 smaller_gam(long double x)
289 {
290 	long double d, rhi, rlo, t, xhi, xlo;
291 	struct Double r;
292 
293 	if (x < x0 + left) {
294 		t = (float)x;
295 		d = (t + x) * (x - t);
296 		t *= t;
297 		xhi = (float)(t + x);
298 		xlo = x - xhi;
299 		xlo += t;
300 		xlo += d;
301 		t = 1 - x0;
302 		t += x;
303 		d = 1 - x0;
304 		d -= t;
305 		d += x;
306 		x = xhi + xlo;
307 	} else {
308 		xhi = (float)x;
309 		xlo = x - xhi;
310 		t = x - x0;
311 		d = - x0 - t;
312 		d += x;
313 	}
314 
315 	r = ratfun_gam(t, d);
316 	d = (float)(r.a / x);
317 	r.a -= d * xhi;
318 	r.a -= d * xlo;
319 	r.a += r.b;
320 
321 	return (d + r.a / x);
322 }
323 /*
324  * x < 0
325  *
326  * Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
327  * At negative integers, return NaN and raise invalid.
328  */
329 static const union IEEEl2bits
330 piu = LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L);
331 #define	pi	(piu.e)
332 
333 static long double
334 neg_gam(long double x)
335 {
336 	int sgn = 1;
337 	struct Double lg, lsine;
338 	long double y, z;
339 
340 	y = ceill(x);
341 	if (y == x)		/* Negative integer. */
342 		return ((x - x) / zero);
343 
344 	z = y - x;
345 	if (z > 0.5)
346 		z = 1 - z;
347 
348 	y = y / 2;
349 	if (y == ceill(y))
350 		sgn = -1;
351 
352 	if (z < 0.25)
353 		z = sinpil(z);
354 	else
355 		z = cospil(0.5 - z);
356 
357 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
358 	if (x < -1753) {
359 
360 		if (x < -1760)
361 			return (sgn * tiny * tiny);
362 		y = expl(lgammal(x) / 2);
363 		y *= y;
364 		return (sgn < 0 ? -y : y);
365 	}
366 
367 
368 	y = 1 - x;
369 	if (1 - y == x)
370 		y = tgammal(y);
371 	else		/* 1-x is inexact */
372 		y = - x * tgammal(-x);
373 
374 	if (sgn < 0) y = -y;
375 	return (pi / (y * z));
376 }
377 /*
378  * xmax comes from lgamma(xmax) - emax * log(2) = 0.
379  * static const float  xmax = 35.040095f
380  * static const double xmax = 171.624376956302725;
381  * ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
382  * ld128: 1.75554834290446291700388921607020320e+03L,
383  *
384  * iota is a sloppy threshold to isolate x = 0.
385  */
386 static const double xmax = 1755.54834290446291689;
387 static const double iota = 0x1p-116;
388 
389 long double
390 tgammal(long double x)
391 {
392 	struct Double u;
393 
394 	ENTERI();
395 
396 	if (x >= 6) {
397 		if (x > xmax)
398 			RETURNI(x / zero);
399 		u = large_gam(x);
400 		RETURNI(__exp__D(u.a, u.b));
401 	}
402 
403 	if (x >= 1 + left + x0)
404 		RETURNI(small_gam(x));
405 
406 	if (x > iota)
407 		RETURNI(smaller_gam(x));
408 
409 	if (x > -iota) {
410 		if (x != 0)
411 			u.a = 1 - tiny;	/* raise inexact */
412 		RETURNI(1 / x);
413 	}
414 
415 	if (!isfinite(x))
416 		RETURNI(x - x);		/* x is NaN or -Inf */
417 
418 	RETURNI(neg_gam(x));
419 }
420