1*03a88e3dSMark Murray /*-
2*03a88e3dSMark Murray * SPDX-License-Identifier: BSD-3-Clause
3*03a88e3dSMark Murray *
4*03a88e3dSMark Murray * Copyright (c) 1992, 1993
5*03a88e3dSMark Murray * The Regents of the University of California. All rights reserved.
6*03a88e3dSMark Murray *
7*03a88e3dSMark Murray * Redistribution and use in source and binary forms, with or without
8*03a88e3dSMark Murray * modification, are permitted provided that the following conditions
9*03a88e3dSMark Murray * are met:
10*03a88e3dSMark Murray * 1. Redistributions of source code must retain the above copyright
11*03a88e3dSMark Murray * notice, this list of conditions and the following disclaimer.
12*03a88e3dSMark Murray * 2. Redistributions in binary form must reproduce the above copyright
13*03a88e3dSMark Murray * notice, this list of conditions and the following disclaimer in the
14*03a88e3dSMark Murray * documentation and/or other materials provided with the distribution.
15*03a88e3dSMark Murray * 3. Neither the name of the University nor the names of its contributors
16*03a88e3dSMark Murray * may be used to endorse or promote products derived from this software
17*03a88e3dSMark Murray * without specific prior written permission.
18*03a88e3dSMark Murray *
19*03a88e3dSMark Murray * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20*03a88e3dSMark Murray * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21*03a88e3dSMark Murray * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22*03a88e3dSMark Murray * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23*03a88e3dSMark Murray * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24*03a88e3dSMark Murray * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25*03a88e3dSMark Murray * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26*03a88e3dSMark Murray * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27*03a88e3dSMark Murray * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28*03a88e3dSMark Murray * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29*03a88e3dSMark Murray * SUCH DAMAGE.
30*03a88e3dSMark Murray */
31*03a88e3dSMark Murray
32*03a88e3dSMark Murray /*
33*03a88e3dSMark Murray * The original code, FreeBSD's old svn r93211, contain the following
34*03a88e3dSMark Murray * attribution:
35*03a88e3dSMark Murray *
36*03a88e3dSMark Murray * This code by P. McIlroy, Oct 1992;
37*03a88e3dSMark Murray *
38*03a88e3dSMark Murray * The financial support of UUNET Communications Services is greatfully
39*03a88e3dSMark Murray * acknowledged.
40*03a88e3dSMark Murray *
41*03a88e3dSMark Murray * bsdrc/b_tgamma.c converted to long double by Steven G. Kargl.
42*03a88e3dSMark Murray */
43*03a88e3dSMark Murray
44*03a88e3dSMark Murray /*
45*03a88e3dSMark Murray * See bsdsrc/t_tgamma.c for implementation details.
46*03a88e3dSMark Murray */
47*03a88e3dSMark Murray
48*03a88e3dSMark Murray #include <float.h>
49*03a88e3dSMark Murray
50*03a88e3dSMark Murray #if LDBL_MAX_EXP != 0x4000
51*03a88e3dSMark Murray #error "Unsupported long double format"
52*03a88e3dSMark Murray #endif
53*03a88e3dSMark Murray
54*03a88e3dSMark Murray #ifdef __i386__
55*03a88e3dSMark Murray #include <ieeefp.h>
56*03a88e3dSMark Murray #endif
57*03a88e3dSMark Murray
58*03a88e3dSMark Murray #include "fpmath.h"
59*03a88e3dSMark Murray #include "math.h"
60*03a88e3dSMark Murray #include "math_private.h"
61*03a88e3dSMark Murray
62*03a88e3dSMark Murray /* Used in b_log.c and below. */
63*03a88e3dSMark Murray struct Double {
64*03a88e3dSMark Murray long double a;
65*03a88e3dSMark Murray long double b;
66*03a88e3dSMark Murray };
67*03a88e3dSMark Murray
68*03a88e3dSMark Murray #include "b_logl.c"
69*03a88e3dSMark Murray #include "b_expl.c"
70*03a88e3dSMark Murray
71*03a88e3dSMark Murray static const double zero = 0.;
72*03a88e3dSMark Murray static const volatile double tiny = 1e-300;
73*03a88e3dSMark Murray /*
74*03a88e3dSMark Murray * x >= 6
75*03a88e3dSMark Murray *
76*03a88e3dSMark Murray * Use the asymptotic approximation (Stirling's formula) adjusted for
77*03a88e3dSMark Murray * equal-ripples:
78*03a88e3dSMark Murray *
79*03a88e3dSMark Murray * log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
80*03a88e3dSMark Murray *
81*03a88e3dSMark Murray * Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
82*03a88e3dSMark Murray * premature round-off.
83*03a88e3dSMark Murray *
84*03a88e3dSMark Murray * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
85*03a88e3dSMark Murray */
86*03a88e3dSMark Murray
87*03a88e3dSMark Murray /*
88*03a88e3dSMark Murray * The following is a decomposition of 0.5 * (log(2*pi) - 1) into the
89*03a88e3dSMark Murray * first 12 bits in ln2pi_hi and the trailing 64 bits in ln2pi_lo. The
90*03a88e3dSMark Murray * variables are clearly misnamed.
91*03a88e3dSMark Murray */
92*03a88e3dSMark Murray static const union IEEEl2bits
93*03a88e3dSMark Murray ln2pi_hiu = LD80C(0xd680000000000000, -2, 4.18945312500000000000e-01L),
94*03a88e3dSMark Murray ln2pi_lou = LD80C(0xe379b414b596d687, -18, -6.77929532725821967032e-06L);
95*03a88e3dSMark Murray #define ln2pi_hi (ln2pi_hiu.e)
96*03a88e3dSMark Murray #define ln2pi_lo (ln2pi_lou.e)
97*03a88e3dSMark Murray
98*03a88e3dSMark Murray static const union IEEEl2bits
99*03a88e3dSMark Murray Pa0u = LD80C(0xaaaaaaaaaaaaaaaa, -4, 8.33333333333333333288e-02L),
100*03a88e3dSMark Murray Pa1u = LD80C(0xb60b60b60b5fcd59, -9, -2.77777777777776516326e-03L),
101*03a88e3dSMark Murray Pa2u = LD80C(0xd00d00cffbb47014, -11, 7.93650793635429639018e-04L),
102*03a88e3dSMark Murray Pa3u = LD80C(0x9c09c07c0805343e, -11, -5.95238087960599252215e-04L),
103*03a88e3dSMark Murray Pa4u = LD80C(0xdca8d31f8e6e5e8f, -11, 8.41749082509607342883e-04L),
104*03a88e3dSMark Murray Pa5u = LD80C(0xfb4d4289632f1638, -10, -1.91728055205541624556e-03L),
105*03a88e3dSMark Murray Pa6u = LD80C(0xd15a4ba04078d3f8, -8, 6.38893788027752396194e-03L),
106*03a88e3dSMark Murray Pa7u = LD80C(0xe877283110bcad95, -6, -2.83771309846297590312e-02L),
107*03a88e3dSMark Murray Pa8u = LD80C(0x8da97eed13717af8, -3, 1.38341887683837576925e-01L),
108*03a88e3dSMark Murray Pa9u = LD80C(0xf093b1c1584e30ce, -2, -4.69876818515470146031e-01L);
109*03a88e3dSMark Murray #define Pa0 (Pa0u.e)
110*03a88e3dSMark Murray #define Pa1 (Pa1u.e)
111*03a88e3dSMark Murray #define Pa2 (Pa2u.e)
112*03a88e3dSMark Murray #define Pa3 (Pa3u.e)
113*03a88e3dSMark Murray #define Pa4 (Pa4u.e)
114*03a88e3dSMark Murray #define Pa5 (Pa5u.e)
115*03a88e3dSMark Murray #define Pa6 (Pa6u.e)
116*03a88e3dSMark Murray #define Pa7 (Pa7u.e)
117*03a88e3dSMark Murray #define Pa8 (Pa8u.e)
118*03a88e3dSMark Murray #define Pa9 (Pa9u.e)
119*03a88e3dSMark Murray
120*03a88e3dSMark Murray static struct Double
large_gam(long double x)121*03a88e3dSMark Murray large_gam(long double x)
122*03a88e3dSMark Murray {
123*03a88e3dSMark Murray long double p, z, thi, tlo, xhi, xlo;
124*03a88e3dSMark Murray long double logx;
125*03a88e3dSMark Murray struct Double u;
126*03a88e3dSMark Murray
127*03a88e3dSMark Murray z = 1 / (x * x);
128*03a88e3dSMark Murray p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 +
129*03a88e3dSMark Murray z * (Pa6 + z * (Pa7 + z * (Pa8 + z * Pa9))))))));
130*03a88e3dSMark Murray p = p / x;
131*03a88e3dSMark Murray
132*03a88e3dSMark Murray u = __log__D(x);
133*03a88e3dSMark Murray u.a -= 1;
134*03a88e3dSMark Murray
135*03a88e3dSMark Murray /* Split (x - 0.5) in high and low parts. */
136*03a88e3dSMark Murray x -= 0.5L;
137*03a88e3dSMark Murray xhi = (float)x;
138*03a88e3dSMark Murray xlo = x - xhi;
139*03a88e3dSMark Murray
140*03a88e3dSMark Murray /* Compute t = (x-.5)*(log(x)-1) in extra precision. */
141*03a88e3dSMark Murray thi = xhi * u.a;
142*03a88e3dSMark Murray tlo = xlo * u.a + x * u.b;
143*03a88e3dSMark Murray
144*03a88e3dSMark Murray /* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
145*03a88e3dSMark Murray tlo += ln2pi_lo;
146*03a88e3dSMark Murray tlo += p;
147*03a88e3dSMark Murray u.a = ln2pi_hi + tlo;
148*03a88e3dSMark Murray u.a += thi;
149*03a88e3dSMark Murray u.b = thi - u.a;
150*03a88e3dSMark Murray u.b += ln2pi_hi;
151*03a88e3dSMark Murray u.b += tlo;
152*03a88e3dSMark Murray return (u);
153*03a88e3dSMark Murray }
154*03a88e3dSMark Murray /*
155*03a88e3dSMark Murray * Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
156*03a88e3dSMark Murray * [1.066.., 2.066..] accurate to 4.25e-19.
157*03a88e3dSMark Murray *
158*03a88e3dSMark Murray * Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
159*03a88e3dSMark Murray */
160*03a88e3dSMark Murray static const union IEEEl2bits
161*03a88e3dSMark Murray a0_hiu = LD80C(0xe2b6e4153a57746c, -1, 8.85603194410888700265e-01L),
162*03a88e3dSMark Murray a0_lou = LD80C(0x851566d40f32c76d, -66, 1.40907742727049706207e-20L);
163*03a88e3dSMark Murray #define a0_hi (a0_hiu.e)
164*03a88e3dSMark Murray #define a0_lo (a0_lou.e)
165*03a88e3dSMark Murray
166*03a88e3dSMark Murray static const union IEEEl2bits
167*03a88e3dSMark Murray P0u = LD80C(0xdb629fb9bbdc1c1d, -2, 4.28486815855585429733e-01L),
168*03a88e3dSMark Murray P1u = LD80C(0xe6f4f9f5641aa6be, -3, 2.25543885805587730552e-01L),
169*03a88e3dSMark Murray P2u = LD80C(0xead1bd99fdaf7cc1, -6, 2.86644652514293482381e-02L),
170*03a88e3dSMark Murray P3u = LD80C(0x9ccc8b25838ab1e0, -8, 4.78512567772456362048e-03L),
171*03a88e3dSMark Murray P4u = LD80C(0x8f0c4383ef9ce72a, -9, 2.18273781132301146458e-03L),
172*03a88e3dSMark Murray P5u = LD80C(0xe732ab2c0a2778da, -13, 2.20487522485636008928e-04L),
173*03a88e3dSMark Murray P6u = LD80C(0xce70b27ca822b297, -16, 2.46095923774929264284e-05L),
174*03a88e3dSMark Murray P7u = LD80C(0xa309e2e16fb63663, -19, 2.42946473022376182921e-06L),
175*03a88e3dSMark Murray P8u = LD80C(0xaf9c110efb2c633d, -23, 1.63549217667765869987e-07L),
176*03a88e3dSMark Murray Q1u = LD80C(0xd4d7422719f48f15, -1, 8.31409582658993993626e-01L),
177*03a88e3dSMark Murray Q2u = LD80C(0xe13138ea404f1268, -5, -5.49785826915643198508e-02L),
178*03a88e3dSMark Murray Q3u = LD80C(0xd1c6cc91989352c0, -4, -1.02429960435139887683e-01L),
179*03a88e3dSMark Murray Q4u = LD80C(0xa7e9435a84445579, -7, 1.02484853505908820524e-02L),
180*03a88e3dSMark Murray Q5u = LD80C(0x83c7c34db89b7bda, -8, 4.02161632832052872697e-03L),
181*03a88e3dSMark Murray Q6u = LD80C(0xbed06bf6e1c14e5b, -11, -7.27898206351223022157e-04L),
182*03a88e3dSMark Murray Q7u = LD80C(0xef05bf841d4504c0, -18, 7.12342421869453515194e-06L),
183*03a88e3dSMark Murray Q8u = LD80C(0xf348d08a1ff53cb1, -19, 3.62522053809474067060e-06L);
184*03a88e3dSMark Murray #define P0 (P0u.e)
185*03a88e3dSMark Murray #define P1 (P1u.e)
186*03a88e3dSMark Murray #define P2 (P2u.e)
187*03a88e3dSMark Murray #define P3 (P3u.e)
188*03a88e3dSMark Murray #define P4 (P4u.e)
189*03a88e3dSMark Murray #define P5 (P5u.e)
190*03a88e3dSMark Murray #define P6 (P6u.e)
191*03a88e3dSMark Murray #define P7 (P7u.e)
192*03a88e3dSMark Murray #define P8 (P8u.e)
193*03a88e3dSMark Murray #define Q1 (Q1u.e)
194*03a88e3dSMark Murray #define Q2 (Q2u.e)
195*03a88e3dSMark Murray #define Q3 (Q3u.e)
196*03a88e3dSMark Murray #define Q4 (Q4u.e)
197*03a88e3dSMark Murray #define Q5 (Q5u.e)
198*03a88e3dSMark Murray #define Q6 (Q6u.e)
199*03a88e3dSMark Murray #define Q7 (Q7u.e)
200*03a88e3dSMark Murray #define Q8 (Q8u.e)
201*03a88e3dSMark Murray
202*03a88e3dSMark Murray static struct Double
ratfun_gam(long double z,long double c)203*03a88e3dSMark Murray ratfun_gam(long double z, long double c)
204*03a88e3dSMark Murray {
205*03a88e3dSMark Murray long double p, q, thi, tlo;
206*03a88e3dSMark Murray struct Double r;
207*03a88e3dSMark Murray
208*03a88e3dSMark Murray q = 1 + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 +
209*03a88e3dSMark Murray z * (Q6 + z * (Q7 + z * Q8)))))));
210*03a88e3dSMark Murray p = P0 + z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 +
211*03a88e3dSMark Murray z * (P6 + z * (P7 + z * P8)))))));
212*03a88e3dSMark Murray p = p / q;
213*03a88e3dSMark Murray
214*03a88e3dSMark Murray /* Split z into high and low parts. */
215*03a88e3dSMark Murray thi = (float)z;
216*03a88e3dSMark Murray tlo = (z - thi) + c;
217*03a88e3dSMark Murray tlo *= (thi + z);
218*03a88e3dSMark Murray
219*03a88e3dSMark Murray /* Split (z+c)^2 into high and low parts. */
220*03a88e3dSMark Murray thi *= thi;
221*03a88e3dSMark Murray q = thi;
222*03a88e3dSMark Murray thi = (float)thi;
223*03a88e3dSMark Murray tlo += (q - thi);
224*03a88e3dSMark Murray
225*03a88e3dSMark Murray /* Split p/q into high and low parts. */
226*03a88e3dSMark Murray r.a = (float)p;
227*03a88e3dSMark Murray r.b = p - r.a;
228*03a88e3dSMark Murray
229*03a88e3dSMark Murray tlo = tlo * p + thi * r.b + a0_lo;
230*03a88e3dSMark Murray thi *= r.a; /* t = (z+c)^2*(P/Q) */
231*03a88e3dSMark Murray r.a = (float)(thi + a0_hi);
232*03a88e3dSMark Murray r.b = ((a0_hi - r.a) + thi) + tlo;
233*03a88e3dSMark Murray return (r); /* r = a0 + t */
234*03a88e3dSMark Murray }
235*03a88e3dSMark Murray /*
236*03a88e3dSMark Murray * x < 6
237*03a88e3dSMark Murray *
238*03a88e3dSMark Murray * Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
239*03a88e3dSMark Murray * 2.066124]. Use a rational approximation centered at the minimum
240*03a88e3dSMark Murray * (x0+1) to ensure monotonicity.
241*03a88e3dSMark Murray *
242*03a88e3dSMark Murray * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
243*03a88e3dSMark Murray * It also has correct monotonicity.
244*03a88e3dSMark Murray */
245*03a88e3dSMark Murray static const union IEEEl2bits
246*03a88e3dSMark Murray xm1u = LD80C(0xec5b0c6ad7c7edc3, -2, 4.61632144968362341254e-01L);
247*03a88e3dSMark Murray #define x0 (xm1u.e)
248*03a88e3dSMark Murray
249*03a88e3dSMark Murray static const double
250*03a88e3dSMark Murray left = -0.3955078125; /* left boundary for rat. approx */
251*03a88e3dSMark Murray
252*03a88e3dSMark Murray static long double
small_gam(long double x)253*03a88e3dSMark Murray small_gam(long double x)
254*03a88e3dSMark Murray {
255*03a88e3dSMark Murray long double t, y, ym1;
256*03a88e3dSMark Murray struct Double yy, r;
257*03a88e3dSMark Murray
258*03a88e3dSMark Murray y = x - 1;
259*03a88e3dSMark Murray
260*03a88e3dSMark Murray if (y <= 1 + (left + x0)) {
261*03a88e3dSMark Murray yy = ratfun_gam(y - x0, 0);
262*03a88e3dSMark Murray return (yy.a + yy.b);
263*03a88e3dSMark Murray }
264*03a88e3dSMark Murray
265*03a88e3dSMark Murray r.a = (float)y;
266*03a88e3dSMark Murray yy.a = r.a - 1;
267*03a88e3dSMark Murray y = y - 1 ;
268*03a88e3dSMark Murray r.b = yy.b = y - yy.a;
269*03a88e3dSMark Murray
270*03a88e3dSMark Murray /* Argument reduction: G(x+1) = x*G(x) */
271*03a88e3dSMark Murray for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) {
272*03a88e3dSMark Murray t = r.a * yy.a;
273*03a88e3dSMark Murray r.b = r.a * yy.b + y * r.b;
274*03a88e3dSMark Murray r.a = (float)t;
275*03a88e3dSMark Murray r.b += (t - r.a);
276*03a88e3dSMark Murray }
277*03a88e3dSMark Murray
278*03a88e3dSMark Murray /* Return r*tgamma(y). */
279*03a88e3dSMark Murray yy = ratfun_gam(y - x0, 0);
280*03a88e3dSMark Murray y = r.b * (yy.a + yy.b) + r.a * yy.b;
281*03a88e3dSMark Murray y += yy.a * r.a;
282*03a88e3dSMark Murray return (y);
283*03a88e3dSMark Murray }
284*03a88e3dSMark Murray /*
285*03a88e3dSMark Murray * Good on (0, 1+x0+left]. Accurate to 1 ulp.
286*03a88e3dSMark Murray */
287*03a88e3dSMark Murray static long double
smaller_gam(long double x)288*03a88e3dSMark Murray smaller_gam(long double x)
289*03a88e3dSMark Murray {
290*03a88e3dSMark Murray long double d, rhi, rlo, t, xhi, xlo;
291*03a88e3dSMark Murray struct Double r;
292*03a88e3dSMark Murray
293*03a88e3dSMark Murray if (x < x0 + left) {
294*03a88e3dSMark Murray t = (float)x;
295*03a88e3dSMark Murray d = (t + x) * (x - t);
296*03a88e3dSMark Murray t *= t;
297*03a88e3dSMark Murray xhi = (float)(t + x);
298*03a88e3dSMark Murray xlo = x - xhi;
299*03a88e3dSMark Murray xlo += t;
300*03a88e3dSMark Murray xlo += d;
301*03a88e3dSMark Murray t = 1 - x0;
302*03a88e3dSMark Murray t += x;
303*03a88e3dSMark Murray d = 1 - x0;
304*03a88e3dSMark Murray d -= t;
305*03a88e3dSMark Murray d += x;
306*03a88e3dSMark Murray x = xhi + xlo;
307*03a88e3dSMark Murray } else {
308*03a88e3dSMark Murray xhi = (float)x;
309*03a88e3dSMark Murray xlo = x - xhi;
310*03a88e3dSMark Murray t = x - x0;
311*03a88e3dSMark Murray d = - x0 - t;
312*03a88e3dSMark Murray d += x;
313*03a88e3dSMark Murray }
314*03a88e3dSMark Murray
315*03a88e3dSMark Murray r = ratfun_gam(t, d);
316*03a88e3dSMark Murray d = (float)(r.a / x);
317*03a88e3dSMark Murray r.a -= d * xhi;
318*03a88e3dSMark Murray r.a -= d * xlo;
319*03a88e3dSMark Murray r.a += r.b;
320*03a88e3dSMark Murray
321*03a88e3dSMark Murray return (d + r.a / x);
322*03a88e3dSMark Murray }
323*03a88e3dSMark Murray /*
324*03a88e3dSMark Murray * x < 0
325*03a88e3dSMark Murray *
326*03a88e3dSMark Murray * Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
327*03a88e3dSMark Murray * At negative integers, return NaN and raise invalid.
328*03a88e3dSMark Murray */
329*03a88e3dSMark Murray static const union IEEEl2bits
330*03a88e3dSMark Murray piu = LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L);
331*03a88e3dSMark Murray #define pi (piu.e)
332*03a88e3dSMark Murray
333*03a88e3dSMark Murray static long double
neg_gam(long double x)334*03a88e3dSMark Murray neg_gam(long double x)
335*03a88e3dSMark Murray {
336*03a88e3dSMark Murray int sgn = 1;
337*03a88e3dSMark Murray struct Double lg, lsine;
338*03a88e3dSMark Murray long double y, z;
339*03a88e3dSMark Murray
340*03a88e3dSMark Murray y = ceill(x);
341*03a88e3dSMark Murray if (y == x) /* Negative integer. */
342*03a88e3dSMark Murray return ((x - x) / zero);
343*03a88e3dSMark Murray
344*03a88e3dSMark Murray z = y - x;
345*03a88e3dSMark Murray if (z > 0.5)
346*03a88e3dSMark Murray z = 1 - z;
347*03a88e3dSMark Murray
348*03a88e3dSMark Murray y = y / 2;
349*03a88e3dSMark Murray if (y == ceill(y))
350*03a88e3dSMark Murray sgn = -1;
351*03a88e3dSMark Murray
352*03a88e3dSMark Murray if (z < 0.25)
353*03a88e3dSMark Murray z = sinpil(z);
354*03a88e3dSMark Murray else
355*03a88e3dSMark Murray z = cospil(0.5 - z);
356*03a88e3dSMark Murray
357*03a88e3dSMark Murray /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
358*03a88e3dSMark Murray if (x < -1753) {
359*03a88e3dSMark Murray
360*03a88e3dSMark Murray if (x < -1760)
361*03a88e3dSMark Murray return (sgn * tiny * tiny);
362*03a88e3dSMark Murray y = expl(lgammal(x) / 2);
363*03a88e3dSMark Murray y *= y;
364*03a88e3dSMark Murray return (sgn < 0 ? -y : y);
365*03a88e3dSMark Murray }
366*03a88e3dSMark Murray
367*03a88e3dSMark Murray
368*03a88e3dSMark Murray y = 1 - x;
369*03a88e3dSMark Murray if (1 - y == x)
370*03a88e3dSMark Murray y = tgammal(y);
371*03a88e3dSMark Murray else /* 1-x is inexact */
372*03a88e3dSMark Murray y = - x * tgammal(-x);
373*03a88e3dSMark Murray
374*03a88e3dSMark Murray if (sgn < 0) y = -y;
375*03a88e3dSMark Murray return (pi / (y * z));
376*03a88e3dSMark Murray }
377*03a88e3dSMark Murray /*
378*03a88e3dSMark Murray * xmax comes from lgamma(xmax) - emax * log(2) = 0.
379*03a88e3dSMark Murray * static const float xmax = 35.040095f
380*03a88e3dSMark Murray * static const double xmax = 171.624376956302725;
381*03a88e3dSMark Murray * ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
382*03a88e3dSMark Murray * ld128: 1.75554834290446291700388921607020320e+03L,
383*03a88e3dSMark Murray *
384*03a88e3dSMark Murray * iota is a sloppy threshold to isolate x = 0.
385*03a88e3dSMark Murray */
386*03a88e3dSMark Murray static const double xmax = 1755.54834290446291689;
387*03a88e3dSMark Murray static const double iota = 0x1p-116;
388*03a88e3dSMark Murray
389*03a88e3dSMark Murray long double
tgammal(long double x)390*03a88e3dSMark Murray tgammal(long double x)
391*03a88e3dSMark Murray {
392*03a88e3dSMark Murray struct Double u;
393*03a88e3dSMark Murray
394*03a88e3dSMark Murray ENTERI();
395*03a88e3dSMark Murray
396*03a88e3dSMark Murray if (x >= 6) {
397*03a88e3dSMark Murray if (x > xmax)
398*03a88e3dSMark Murray RETURNI(x / zero);
399*03a88e3dSMark Murray u = large_gam(x);
400*03a88e3dSMark Murray RETURNI(__exp__D(u.a, u.b));
401*03a88e3dSMark Murray }
402*03a88e3dSMark Murray
403*03a88e3dSMark Murray if (x >= 1 + left + x0)
404*03a88e3dSMark Murray RETURNI(small_gam(x));
405*03a88e3dSMark Murray
406*03a88e3dSMark Murray if (x > iota)
407*03a88e3dSMark Murray RETURNI(smaller_gam(x));
408*03a88e3dSMark Murray
409*03a88e3dSMark Murray if (x > -iota) {
410*03a88e3dSMark Murray if (x != 0)
411*03a88e3dSMark Murray u.a = 1 - tiny; /* raise inexact */
412*03a88e3dSMark Murray RETURNI(1 / x);
413*03a88e3dSMark Murray }
414*03a88e3dSMark Murray
415*03a88e3dSMark Murray if (!isfinite(x))
416*03a88e3dSMark Murray RETURNI(x - x); /* x is NaN or -Inf */
417*03a88e3dSMark Murray
418*03a88e3dSMark Murray RETURNI(neg_gam(x));
419*03a88e3dSMark Murray }
420