xref: /freebsd/lib/msun/ld80/b_expl.c (revision 55141f2c8991b2a6adbf30bb0fe3e6cbc303f06d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1985, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /*
33  * See bsdsrc/b_exp.c for implementation details.
34  *
35  * bsdrc/b_exp.c converted to long double by Steven G. Kargl.
36  */
37 
38 #include "fpmath.h"
39 #include "math_private.h"
40 
41 static const union IEEEl2bits
42     p0u = LD80C(0xaaaaaaaaaaaaaaab,    -3,  1.66666666666666666671e-01L),
43     p1u = LD80C(0xb60b60b60b60b59a,    -9, -2.77777777777777775377e-03L),
44     p2u = LD80C(0x8ab355e008a3cfce,   -14,  6.61375661375629297465e-05L),
45     p3u = LD80C(0xddebbc994b0c1376,   -20, -1.65343915327882529784e-06L),
46     p4u = LD80C(0xb354784cb4ef4c41,   -25,  4.17535101591534118469e-08L),
47     p5u = LD80C(0x913e8a718382ce75,   -30, -1.05679137034774806475e-09L),
48     p6u = LD80C(0xe8f0042aa134502e,   -36,  2.64819349895429516863e-11L);
49 #define	p1	(p0u.e)
50 #define	p2	(p1u.e)
51 #define	p3	(p2u.e)
52 #define	p4	(p3u.e)
53 #define	p5	(p4u.e)
54 #define	p6	(p5u.e)
55 #define	p7	(p6u.e)
56 
57 /*
58  * lnhuge = (LDBL_MAX_EXP + 9) * log(2.)
59  * lntiny = (LDBL_MIN_EXP - 64 - 10) * log(2.)
60  * invln2 = 1 / log(2.)
61  */
62 static const union IEEEl2bits
63 ln2hiu  = LD80C(0xb17217f700000000,  -1,  6.93147180369123816490e-01L),
64 ln2lou  = LD80C(0xd1cf79abc9e3b398, -33,  1.90821492927058781614e-10L),
65 lnhugeu = LD80C(0xb18b0c0330a8fad9,  13,  1.13627617309191834574e+04L),
66 lntinyu = LD80C(0xb236f28a68bc3bd7,  13, -1.14057368561139000667e+04L),
67 invln2u = LD80C(0xb8aa3b295c17f0bc,   0,  1.44269504088896340739e+00L);
68 #define	ln2hi	(ln2hiu.e)
69 #define ln2lo	(ln2lou.e)
70 #define lnhuge	(lnhugeu.e)
71 #define	lntiny	(lntinyu.e)
72 #define	invln2	(invln2u.e)
73 
74 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
75 
76 static long double
77 __exp__D(long double x, long double c)
78 {
79 	long double hi, lo, z;
80 	int k;
81 
82 	if (x != x)	/* x is NaN. */
83 		return(x);
84 
85 	if (x <= lnhuge) {
86 		if (x >= lntiny) {
87 			/* argument reduction: x --> x - k*ln2 */
88 			z = invln2 * x;
89 			k = z + copysignl(0.5L, x);
90 
91 		    	/*
92 			 * Express (x + c) - k * ln2 as hi - lo.
93 			 * Let x = hi - lo rounded.
94 			 */
95 			hi = x - k * ln2hi;	/* Exact. */
96 			lo = k * ln2lo - c;
97 			x = hi - lo;
98 
99 			/* Return 2^k*[1+x+x*c/(2+c)]  */
100 			z = x * x;
101 			c = x - z * (p1 + z * (p2 + z * (p3 + z * (p4 +
102 			    z * (p5 + z * (p6 + z * p7))))));
103 			c = (x * c) / (2 - c);
104 
105 			return (ldexpl(1 + (hi - (lo - c)), k));
106 		} else {
107 			/* exp(-INF) is 0. exp(-big) underflows to 0.  */
108 			return (isfinite(x) ? ldexpl(1., -5000) : 0);
109 		}
110 	} else
111 		/* exp(INF) is INF, exp(+big#) overflows to INF */
112 		return (isfinite(x) ? ldexpl(1., 5000) : x);
113 }
114