1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2009-2013 Steven G. Kargl 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Optimized by Bruce D. Evans. 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 /* 35 * ld128 version of s_expl.c. See ../ld80/s_expl.c for most comments. 36 */ 37 38 #include <float.h> 39 40 #include "fpmath.h" 41 #include "math.h" 42 #include "math_private.h" 43 #include "k_expl.h" 44 45 /* XXX Prevent compilers from erroneously constant folding these: */ 46 static const volatile long double 47 huge = 0x1p10000L, 48 tiny = 0x1p-10000L; 49 50 static const long double 51 twom10000 = 0x1p-10000L; 52 53 static const long double 54 /* log(2**16384 - 0.5) rounded towards zero: */ 55 /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */ 56 o_threshold = 11356.523406294143949491931077970763428L, 57 /* log(2**(-16381-64-1)) rounded towards zero: */ 58 u_threshold = -11433.462743336297878837243843452621503L; 59 60 long double 61 expl(long double x) 62 { 63 union IEEEl2bits u; 64 long double hi, lo, t, twopk; 65 int k; 66 uint16_t hx, ix; 67 68 DOPRINT_START(&x); 69 70 /* Filter out exceptional cases. */ 71 u.e = x; 72 hx = u.xbits.expsign; 73 ix = hx & 0x7fff; 74 if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */ 75 if (ix == BIAS + LDBL_MAX_EXP) { 76 if (hx & 0x8000) /* x is -Inf or -NaN */ 77 RETURNP(-1 / x); 78 RETURNP(x + x); /* x is +Inf or +NaN */ 79 } 80 if (x > o_threshold) 81 RETURNP(huge * huge); 82 if (x < u_threshold) 83 RETURNP(tiny * tiny); 84 } else if (ix < BIAS - 114) { /* |x| < 0x1p-114 */ 85 RETURN2P(1, x); /* 1 with inexact iff x != 0 */ 86 } 87 88 ENTERI(); 89 90 twopk = 1; 91 __k_expl(x, &hi, &lo, &k); 92 t = SUM2P(hi, lo); 93 94 /* Scale by 2**k. */ 95 /* XXX sparc64 multiplication is so slow that scalbnl() is faster. */ 96 if (k >= LDBL_MIN_EXP) { 97 if (k == LDBL_MAX_EXP) 98 RETURNI(t * 2 * 0x1p16383L); 99 SET_LDBL_EXPSIGN(twopk, BIAS + k); 100 RETURNI(t * twopk); 101 } else { 102 SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000); 103 RETURNI(t * twopk * twom10000); 104 } 105 } 106 107 /* 108 * Our T1 and T2 are chosen to be approximately the points where method 109 * A and method B have the same accuracy. Tang's T1 and T2 are the 110 * points where method A's accuracy changes by a full bit. For Tang, 111 * this drop in accuracy makes method A immediately less accurate than 112 * method B, but our larger INTERVALS makes method A 2 bits more 113 * accurate so it remains the most accurate method significantly 114 * closer to the origin despite losing the full bit in our extended 115 * range for it. 116 * 117 * Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2]. 118 * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear 119 * in both subintervals, so set T3 = 2**-5, which places the condition 120 * into the [T1, T3] interval. 121 * 122 * XXX we now do this more to (partially) balance the number of terms 123 * in the C and D polys than to avoid checking the condition in both 124 * intervals. 125 * 126 * XXX these micro-optimizations are excessive. 127 */ 128 static const double 129 T1 = -0.1659, /* ~-30.625/128 * log(2) */ 130 T2 = 0.1659, /* ~30.625/128 * log(2) */ 131 T3 = 0.03125; 132 133 /* 134 * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]: 135 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03 136 * 137 * XXX none of the long double C or D coeffs except C10 is correctly printed. 138 * If you re-print their values in %.35Le format, the result is always 139 * different. For example, the last 2 digits in C3 should be 59, not 67. 140 * 67 is apparently from rounding an extra-precision value to 36 decimal 141 * places. 142 */ 143 static const long double 144 C3 = 1.66666666666666666666666666666666667e-1L, 145 C4 = 4.16666666666666666666666666666666645e-2L, 146 C5 = 8.33333333333333333333333333333371638e-3L, 147 C6 = 1.38888888888888888888888888891188658e-3L, 148 C7 = 1.98412698412698412698412697235950394e-4L, 149 C8 = 2.48015873015873015873015112487849040e-5L, 150 C9 = 2.75573192239858906525606685484412005e-6L, 151 C10 = 2.75573192239858906612966093057020362e-7L, 152 C11 = 2.50521083854417203619031960151253944e-8L, 153 C12 = 2.08767569878679576457272282566520649e-9L, 154 C13 = 1.60590438367252471783548748824255707e-10L; 155 156 /* 157 * XXX this has 1 more coeff than needed. 158 * XXX can start the double coeffs but not the double mults at C10. 159 * With my coeffs (C10-C17 double; s = best_s): 160 * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]: 161 * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65 162 */ 163 static const double 164 C14 = 1.1470745580491932e-11, /* 0x1.93974a81dae30p-37 */ 165 C15 = 7.6471620181090468e-13, /* 0x1.ae7f3820adab1p-41 */ 166 C16 = 4.7793721460260450e-14, /* 0x1.ae7cd18a18eacp-45 */ 167 C17 = 2.8074757356658877e-15, /* 0x1.949992a1937d9p-49 */ 168 C18 = 1.4760610323699476e-16; /* 0x1.545b43aabfbcdp-53 */ 169 170 /* 171 * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]: 172 * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44 173 */ 174 static const long double 175 D3 = 1.66666666666666666666666666666682245e-1L, 176 D4 = 4.16666666666666666666666666634228324e-2L, 177 D5 = 8.33333333333333333333333364022244481e-3L, 178 D6 = 1.38888888888888888888887138722762072e-3L, 179 D7 = 1.98412698412698412699085805424661471e-4L, 180 D8 = 2.48015873015873015687993712101479612e-5L, 181 D9 = 2.75573192239858944101036288338208042e-6L, 182 D10 = 2.75573192239853161148064676533754048e-7L, 183 D11 = 2.50521083855084570046480450935267433e-8L, 184 D12 = 2.08767569819738524488686318024854942e-9L, 185 D13 = 1.60590442297008495301927448122499313e-10L; 186 187 /* 188 * XXX this has 1 more coeff than needed. 189 * XXX can start the double coeffs but not the double mults at D11. 190 * With my coeffs (D11-D16 double): 191 * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]: 192 * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65 193 */ 194 static const double 195 D14 = 1.1470726176204336e-11, /* 0x1.93971dc395d9ep-37 */ 196 D15 = 7.6478532249581686e-13, /* 0x1.ae892e3D16fcep-41 */ 197 D16 = 4.7628892832607741e-14, /* 0x1.ad00Dfe41feccp-45 */ 198 D17 = 3.0524857220358650e-15; /* 0x1.D7e8d886Df921p-49 */ 199 200 long double 201 expm1l(long double x) 202 { 203 union IEEEl2bits u, v; 204 long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi; 205 long double x_lo, x2; 206 double dr, dx, fn, r2; 207 int k, n, n2; 208 uint16_t hx, ix; 209 210 DOPRINT_START(&x); 211 212 /* Filter out exceptional cases. */ 213 u.e = x; 214 hx = u.xbits.expsign; 215 ix = hx & 0x7fff; 216 if (ix >= BIAS + 7) { /* |x| >= 128 or x is NaN */ 217 if (ix == BIAS + LDBL_MAX_EXP) { 218 if (hx & 0x8000) /* x is -Inf or -NaN */ 219 RETURNP(-1 / x - 1); 220 RETURNP(x + x); /* x is +Inf or +NaN */ 221 } 222 if (x > o_threshold) 223 RETURNP(huge * huge); 224 /* 225 * expm1l() never underflows, but it must avoid 226 * unrepresentable large negative exponents. We used a 227 * much smaller threshold for large |x| above than in 228 * expl() so as to handle not so large negative exponents 229 * in the same way as large ones here. 230 */ 231 if (hx & 0x8000) /* x <= -128 */ 232 RETURN2P(tiny, -1); /* good for x < -114ln2 - eps */ 233 } 234 235 ENTERI(); 236 237 if (T1 < x && x < T2) { 238 x2 = x * x; 239 dx = x; 240 241 if (x < T3) { 242 if (ix < BIAS - 113) { /* |x| < 0x1p-113 */ 243 /* x (rounded) with inexact if x != 0: */ 244 RETURNPI(x == 0 ? x : 245 (0x1p200 * x + fabsl(x)) * 0x1p-200); 246 } 247 q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 + 248 x * (C7 + x * (C8 + x * (C9 + x * (C10 + 249 x * (C11 + x * (C12 + x * (C13 + 250 dx * (C14 + dx * (C15 + dx * (C16 + 251 dx * (C17 + dx * C18)))))))))))))); 252 } else { 253 q = x * x2 * D3 + x2 * x2 * (D4 + x * (D5 + x * (D6 + 254 x * (D7 + x * (D8 + x * (D9 + x * (D10 + 255 x * (D11 + x * (D12 + x * (D13 + 256 dx * (D14 + dx * (D15 + dx * (D16 + 257 dx * D17))))))))))))); 258 } 259 260 x_hi = (float)x; 261 x_lo = x - x_hi; 262 hx2_hi = x_hi * x_hi / 2; 263 hx2_lo = x_lo * (x + x_hi) / 2; 264 if (ix >= BIAS - 7) 265 RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q); 266 else 267 RETURN2PI(x, hx2_lo + q + hx2_hi); 268 } 269 270 /* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */ 271 fn = rnint((double)x * INV_L); 272 n = irint(fn); 273 n2 = (unsigned)n % INTERVALS; 274 k = n >> LOG2_INTERVALS; 275 r1 = x - fn * L1; 276 r2 = fn * -L2; 277 r = r1 + r2; 278 279 /* Prepare scale factor. */ 280 v.e = 1; 281 v.xbits.expsign = BIAS + k; 282 twopk = v.e; 283 284 /* 285 * Evaluate lower terms of 286 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). 287 */ 288 dr = r; 289 q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 + 290 dr * (A7 + dr * (A8 + dr * (A9 + dr * A10)))))))); 291 292 t = tbl[n2].lo + tbl[n2].hi; 293 294 if (k == 0) { 295 t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q + 296 tbl[n2].hi * r1); 297 RETURNI(t); 298 } 299 if (k == -1) { 300 t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q + 301 tbl[n2].hi * r1); 302 RETURNI(t / 2); 303 } 304 if (k < -7) { 305 t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1)); 306 RETURNI(t * twopk - 1); 307 } 308 if (k > 2 * LDBL_MANT_DIG - 1) { 309 t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1)); 310 if (k == LDBL_MAX_EXP) 311 RETURNI(t * 2 * 0x1p16383L - 1); 312 RETURNI(t * twopk - 1); 313 } 314 315 v.xbits.expsign = BIAS - k; 316 twomk = v.e; 317 318 if (k > LDBL_MANT_DIG - 1) 319 t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1)); 320 else 321 t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1)); 322 RETURNI(t * twopk); 323 } 324