xref: /freebsd/lib/msun/ld128/s_expl.c (revision 6202fb7bd368c4d10a594360a9f1d7f6618cc523)
1b83ccea3SSteve Kargl /*-
2a1d69112SSteve Kargl  * Copyright (c) 2009-2013 Steven G. Kargl
3b83ccea3SSteve Kargl  * All rights reserved.
4b83ccea3SSteve Kargl  *
5b83ccea3SSteve Kargl  * Redistribution and use in source and binary forms, with or without
6b83ccea3SSteve Kargl  * modification, are permitted provided that the following conditions
7b83ccea3SSteve Kargl  * are met:
8b83ccea3SSteve Kargl  * 1. Redistributions of source code must retain the above copyright
9b83ccea3SSteve Kargl  *    notice unmodified, this list of conditions, and the following
10b83ccea3SSteve Kargl  *    disclaimer.
11b83ccea3SSteve Kargl  * 2. Redistributions in binary form must reproduce the above copyright
12b83ccea3SSteve Kargl  *    notice, this list of conditions and the following disclaimer in the
13b83ccea3SSteve Kargl  *    documentation and/or other materials provided with the distribution.
14b83ccea3SSteve Kargl  *
15b83ccea3SSteve Kargl  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16b83ccea3SSteve Kargl  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17b83ccea3SSteve Kargl  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18b83ccea3SSteve Kargl  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19b83ccea3SSteve Kargl  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20b83ccea3SSteve Kargl  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21b83ccea3SSteve Kargl  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22b83ccea3SSteve Kargl  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23b83ccea3SSteve Kargl  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24b83ccea3SSteve Kargl  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25a3f70b4eSSteve Kargl  *
26a3f70b4eSSteve Kargl  * Optimized by Bruce D. Evans.
27b83ccea3SSteve Kargl  */
28b83ccea3SSteve Kargl 
29b83ccea3SSteve Kargl #include <sys/cdefs.h>
30b83ccea3SSteve Kargl __FBSDID("$FreeBSD$");
31b83ccea3SSteve Kargl 
328f647ffdSSteve Kargl /*
338f647ffdSSteve Kargl  * ld128 version of s_expl.c.  See ../ld80/s_expl.c for most comments.
348f647ffdSSteve Kargl  */
358f647ffdSSteve Kargl 
36b83ccea3SSteve Kargl #include <float.h>
37b83ccea3SSteve Kargl 
38f7cfe68fSSteve Kargl #include "fpmath.h"
39b83ccea3SSteve Kargl #include "math.h"
40b83ccea3SSteve Kargl #include "math_private.h"
415f63fbd6SSteve Kargl #include "k_expl.h"
42b83ccea3SSteve Kargl 
435f63fbd6SSteve Kargl /* XXX Prevent compilers from erroneously constant folding these: */
445f63fbd6SSteve Kargl static const volatile long double
455f63fbd6SSteve Kargl huge = 0x1p10000L,
465f63fbd6SSteve Kargl tiny = 0x1p-10000L;
47b83ccea3SSteve Kargl 
4831407861SSteve Kargl static const long double
491a287d1dSSteve Kargl twom10000 = 0x1p-10000L;
50b83ccea3SSteve Kargl 
51b83ccea3SSteve Kargl static const long double
5231407861SSteve Kargl /* log(2**16384 - 0.5) rounded towards zero: */
5331407861SSteve Kargl /* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
548f647ffdSSteve Kargl o_threshold =  11356.523406294143949491931077970763428L,
5531407861SSteve Kargl /* log(2**(-16381-64-1)) rounded towards zero: */
568f647ffdSSteve Kargl u_threshold = -11433.462743336297878837243843452621503L;
57b83ccea3SSteve Kargl 
58b83ccea3SSteve Kargl long double
59b83ccea3SSteve Kargl expl(long double x)
60b83ccea3SSteve Kargl {
615f63fbd6SSteve Kargl 	union IEEEl2bits u;
625f63fbd6SSteve Kargl 	long double hi, lo, t, twopk;
635f63fbd6SSteve Kargl 	int k;
648cc74771SSteve Kargl 	uint16_t hx, ix;
65b83ccea3SSteve Kargl 
665f63fbd6SSteve Kargl 	DOPRINT_START(&x);
675f63fbd6SSteve Kargl 
68b83ccea3SSteve Kargl 	/* Filter out exceptional cases. */
69b83ccea3SSteve Kargl 	u.e = x;
70b83ccea3SSteve Kargl 	hx = u.xbits.expsign;
71f7cfe68fSSteve Kargl 	ix = hx & 0x7fff;
72b83ccea3SSteve Kargl 	if (ix >= BIAS + 13) {		/* |x| >= 8192 or x is NaN */
73b83ccea3SSteve Kargl 		if (ix == BIAS + LDBL_MAX_EXP) {
741783063fSSteve Kargl 			if (hx & 0x8000)  /* x is -Inf or -NaN */
755f63fbd6SSteve Kargl 				RETURNP(-1 / x);
765f63fbd6SSteve Kargl 			RETURNP(x + x);	/* x is +Inf or +NaN */
77b83ccea3SSteve Kargl 		}
78b83ccea3SSteve Kargl 		if (x > o_threshold)
795f63fbd6SSteve Kargl 			RETURNP(huge * huge);
80b83ccea3SSteve Kargl 		if (x < u_threshold)
815f63fbd6SSteve Kargl 			RETURNP(tiny * tiny);
821783063fSSteve Kargl 	} else if (ix < BIAS - 114) {	/* |x| < 0x1p-114 */
835f63fbd6SSteve Kargl 		RETURN2P(1, x);		/* 1 with inexact iff x != 0 */
84b83ccea3SSteve Kargl 	}
85b83ccea3SSteve Kargl 
868cc74771SSteve Kargl 	ENTERI();
878cc74771SSteve Kargl 
885f63fbd6SSteve Kargl 	twopk = 1;
895f63fbd6SSteve Kargl 	__k_expl(x, &hi, &lo, &k);
905f63fbd6SSteve Kargl 	t = SUM2P(hi, lo);
91b83ccea3SSteve Kargl 
92b83ccea3SSteve Kargl 	/* Scale by 2**k. */
935f63fbd6SSteve Kargl 	/* XXX sparc64 multiplication is so slow that scalbnl() is faster. */
94b83ccea3SSteve Kargl 	if (k >= LDBL_MIN_EXP) {
95b83ccea3SSteve Kargl 		if (k == LDBL_MAX_EXP)
968cc74771SSteve Kargl 			RETURNI(t * 2 * 0x1p16383L);
975f63fbd6SSteve Kargl 		SET_LDBL_EXPSIGN(twopk, BIAS + k);
988cc74771SSteve Kargl 		RETURNI(t * twopk);
99b83ccea3SSteve Kargl 	} else {
1005f63fbd6SSteve Kargl 		SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
1015f63fbd6SSteve Kargl 		RETURNI(t * twopk * twom10000);
102b83ccea3SSteve Kargl 	}
103b83ccea3SSteve Kargl }
1043ffff4baSSteve Kargl 
1053ffff4baSSteve Kargl /*
1063ffff4baSSteve Kargl  * Our T1 and T2 are chosen to be approximately the points where method
1073ffff4baSSteve Kargl  * A and method B have the same accuracy.  Tang's T1 and T2 are the
1083ffff4baSSteve Kargl  * points where method A's accuracy changes by a full bit.  For Tang,
1093ffff4baSSteve Kargl  * this drop in accuracy makes method A immediately less accurate than
1103ffff4baSSteve Kargl  * method B, but our larger INTERVALS makes method A 2 bits more
1113ffff4baSSteve Kargl  * accurate so it remains the most accurate method significantly
1123ffff4baSSteve Kargl  * closer to the origin despite losing the full bit in our extended
1133ffff4baSSteve Kargl  * range for it.
1143ffff4baSSteve Kargl  *
1153ffff4baSSteve Kargl  * Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2].
1163ffff4baSSteve Kargl  * Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
1173ffff4baSSteve Kargl  * in both subintervals, so set T3 = 2**-5, which places the condition
1183ffff4baSSteve Kargl  * into the [T1, T3] interval.
1195f63fbd6SSteve Kargl  *
1205f63fbd6SSteve Kargl  * XXX we now do this more to (partially) balance the number of terms
1215f63fbd6SSteve Kargl  * in the C and D polys than to avoid checking the condition in both
1225f63fbd6SSteve Kargl  * intervals.
1235f63fbd6SSteve Kargl  *
1245f63fbd6SSteve Kargl  * XXX these micro-optimizations are excessive.
1253ffff4baSSteve Kargl  */
1263ffff4baSSteve Kargl static const double
1273ffff4baSSteve Kargl T1 = -0.1659,				/* ~-30.625/128 * log(2) */
1283ffff4baSSteve Kargl T2 =  0.1659,				/* ~30.625/128 * log(2) */
1293ffff4baSSteve Kargl T3 =  0.03125;
1303ffff4baSSteve Kargl 
1313ffff4baSSteve Kargl /*
1323ffff4baSSteve Kargl  * Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
1333ffff4baSSteve Kargl  * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
134*6202fb7bSDimitry Andric  *
1355f63fbd6SSteve Kargl  * XXX none of the long double C or D coeffs except C10 is correctly printed.
1365f63fbd6SSteve Kargl  * If you re-print their values in %.35Le format, the result is always
1375f63fbd6SSteve Kargl  * different.  For example, the last 2 digits in C3 should be 59, not 67.
1385f63fbd6SSteve Kargl  * 67 is apparently from rounding an extra-precision value to 36 decimal
1395f63fbd6SSteve Kargl  * places.
1403ffff4baSSteve Kargl  */
1413ffff4baSSteve Kargl static const long double
1423ffff4baSSteve Kargl C3  =  1.66666666666666666666666666666666667e-1L,
1433ffff4baSSteve Kargl C4  =  4.16666666666666666666666666666666645e-2L,
1443ffff4baSSteve Kargl C5  =  8.33333333333333333333333333333371638e-3L,
1453ffff4baSSteve Kargl C6  =  1.38888888888888888888888888891188658e-3L,
1463ffff4baSSteve Kargl C7  =  1.98412698412698412698412697235950394e-4L,
1473ffff4baSSteve Kargl C8  =  2.48015873015873015873015112487849040e-5L,
1483ffff4baSSteve Kargl C9  =  2.75573192239858906525606685484412005e-6L,
1493ffff4baSSteve Kargl C10 =  2.75573192239858906612966093057020362e-7L,
1503ffff4baSSteve Kargl C11 =  2.50521083854417203619031960151253944e-8L,
1513ffff4baSSteve Kargl C12 =  2.08767569878679576457272282566520649e-9L,
1523ffff4baSSteve Kargl C13 =  1.60590438367252471783548748824255707e-10L;
1533ffff4baSSteve Kargl 
1545f63fbd6SSteve Kargl /*
1555f63fbd6SSteve Kargl  * XXX this has 1 more coeff than needed.
1565f63fbd6SSteve Kargl  * XXX can start the double coeffs but not the double mults at C10.
1575f63fbd6SSteve Kargl  * With my coeffs (C10-C17 double; s = best_s):
1585f63fbd6SSteve Kargl  * Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
1595f63fbd6SSteve Kargl  * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
1605f63fbd6SSteve Kargl  */
1613ffff4baSSteve Kargl static const double
1623ffff4baSSteve Kargl C14 =  1.1470745580491932e-11,		/*  0x1.93974a81dae30p-37 */
1633ffff4baSSteve Kargl C15 =  7.6471620181090468e-13,		/*  0x1.ae7f3820adab1p-41 */
1643ffff4baSSteve Kargl C16 =  4.7793721460260450e-14,		/*  0x1.ae7cd18a18eacp-45 */
1653ffff4baSSteve Kargl C17 =  2.8074757356658877e-15,		/*  0x1.949992a1937d9p-49 */
1663ffff4baSSteve Kargl C18 =  1.4760610323699476e-16;		/*  0x1.545b43aabfbcdp-53 */
1673ffff4baSSteve Kargl 
1683ffff4baSSteve Kargl /*
1693ffff4baSSteve Kargl  * Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]:
1703ffff4baSSteve Kargl  * |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44
1713ffff4baSSteve Kargl  */
1723ffff4baSSteve Kargl static const long double
1733ffff4baSSteve Kargl D3  =  1.66666666666666666666666666666682245e-1L,
1743ffff4baSSteve Kargl D4  =  4.16666666666666666666666666634228324e-2L,
1753ffff4baSSteve Kargl D5  =  8.33333333333333333333333364022244481e-3L,
1763ffff4baSSteve Kargl D6  =  1.38888888888888888888887138722762072e-3L,
1773ffff4baSSteve Kargl D7  =  1.98412698412698412699085805424661471e-4L,
1783ffff4baSSteve Kargl D8  =  2.48015873015873015687993712101479612e-5L,
1793ffff4baSSteve Kargl D9  =  2.75573192239858944101036288338208042e-6L,
1803ffff4baSSteve Kargl D10 =  2.75573192239853161148064676533754048e-7L,
1813ffff4baSSteve Kargl D11 =  2.50521083855084570046480450935267433e-8L,
1823ffff4baSSteve Kargl D12 =  2.08767569819738524488686318024854942e-9L,
1833ffff4baSSteve Kargl D13 =  1.60590442297008495301927448122499313e-10L;
1843ffff4baSSteve Kargl 
1855f63fbd6SSteve Kargl /*
1865f63fbd6SSteve Kargl  * XXX this has 1 more coeff than needed.
1875f63fbd6SSteve Kargl  * XXX can start the double coeffs but not the double mults at D11.
1885f63fbd6SSteve Kargl  * With my coeffs (D11-D16 double):
1895f63fbd6SSteve Kargl  * Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
1905f63fbd6SSteve Kargl  * |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
1915f63fbd6SSteve Kargl  */
1923ffff4baSSteve Kargl static const double
1933ffff4baSSteve Kargl D14 =  1.1470726176204336e-11,		/*  0x1.93971dc395d9ep-37 */
1943ffff4baSSteve Kargl D15 =  7.6478532249581686e-13,		/*  0x1.ae892e3D16fcep-41 */
1953ffff4baSSteve Kargl D16 =  4.7628892832607741e-14,		/*  0x1.ad00Dfe41feccp-45 */
1963ffff4baSSteve Kargl D17 =  3.0524857220358650e-15;		/*  0x1.D7e8d886Df921p-49 */
1973ffff4baSSteve Kargl 
1983ffff4baSSteve Kargl long double
1993ffff4baSSteve Kargl expm1l(long double x)
2003ffff4baSSteve Kargl {
2013ffff4baSSteve Kargl 	union IEEEl2bits u, v;
2023ffff4baSSteve Kargl 	long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi;
2033ffff4baSSteve Kargl 	long double x_lo, x2;
2043ffff4baSSteve Kargl 	double dr, dx, fn, r2;
2053ffff4baSSteve Kargl 	int k, n, n2;
2063ffff4baSSteve Kargl 	uint16_t hx, ix;
2073ffff4baSSteve Kargl 
2085f63fbd6SSteve Kargl 	DOPRINT_START(&x);
2095f63fbd6SSteve Kargl 
2103ffff4baSSteve Kargl 	/* Filter out exceptional cases. */
2113ffff4baSSteve Kargl 	u.e = x;
2123ffff4baSSteve Kargl 	hx = u.xbits.expsign;
2133ffff4baSSteve Kargl 	ix = hx & 0x7fff;
2143ffff4baSSteve Kargl 	if (ix >= BIAS + 7) {		/* |x| >= 128 or x is NaN */
2153ffff4baSSteve Kargl 		if (ix == BIAS + LDBL_MAX_EXP) {
2163ffff4baSSteve Kargl 			if (hx & 0x8000)  /* x is -Inf or -NaN */
2175f63fbd6SSteve Kargl 				RETURNP(-1 / x - 1);
2185f63fbd6SSteve Kargl 			RETURNP(x + x);	/* x is +Inf or +NaN */
2193ffff4baSSteve Kargl 		}
2203ffff4baSSteve Kargl 		if (x > o_threshold)
2215f63fbd6SSteve Kargl 			RETURNP(huge * huge);
2223ffff4baSSteve Kargl 		/*
2233ffff4baSSteve Kargl 		 * expm1l() never underflows, but it must avoid
2243ffff4baSSteve Kargl 		 * unrepresentable large negative exponents.  We used a
2253ffff4baSSteve Kargl 		 * much smaller threshold for large |x| above than in
2263ffff4baSSteve Kargl 		 * expl() so as to handle not so large negative exponents
2273ffff4baSSteve Kargl 		 * in the same way as large ones here.
2283ffff4baSSteve Kargl 		 */
2293ffff4baSSteve Kargl 		if (hx & 0x8000)	/* x <= -128 */
2305f63fbd6SSteve Kargl 			RETURN2P(tiny, -1);	/* good for x < -114ln2 - eps */
2313ffff4baSSteve Kargl 	}
2323ffff4baSSteve Kargl 
2333ffff4baSSteve Kargl 	ENTERI();
2343ffff4baSSteve Kargl 
2353ffff4baSSteve Kargl 	if (T1 < x && x < T2) {
2363ffff4baSSteve Kargl 		x2 = x * x;
2373ffff4baSSteve Kargl 		dx = x;
2383ffff4baSSteve Kargl 
2393ffff4baSSteve Kargl 		if (x < T3) {
2403ffff4baSSteve Kargl 			if (ix < BIAS - 113) {	/* |x| < 0x1p-113 */
2413ffff4baSSteve Kargl 				/* x (rounded) with inexact if x != 0: */
2425f63fbd6SSteve Kargl 				RETURNPI(x == 0 ? x :
2433ffff4baSSteve Kargl 				    (0x1p200 * x + fabsl(x)) * 0x1p-200);
2443ffff4baSSteve Kargl 			}
2453ffff4baSSteve Kargl 			q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 +
2463ffff4baSSteve Kargl 			    x * (C7 + x * (C8 + x * (C9 + x * (C10 +
2473ffff4baSSteve Kargl 			    x * (C11 + x * (C12 + x * (C13 +
2483ffff4baSSteve Kargl 			    dx * (C14 + dx * (C15 + dx * (C16 +
2493ffff4baSSteve Kargl 			    dx * (C17 + dx * C18))))))))))))));
2503ffff4baSSteve Kargl 		} else {
2513ffff4baSSteve Kargl 			q = x * x2 * D3 + x2 * x2 * (D4 + x * (D5 + x * (D6 +
2523ffff4baSSteve Kargl 			    x * (D7 + x * (D8 + x * (D9 + x * (D10 +
2533ffff4baSSteve Kargl 			    x * (D11 + x * (D12 + x * (D13 +
2543ffff4baSSteve Kargl 			    dx * (D14 + dx * (D15 + dx * (D16 +
2553ffff4baSSteve Kargl 			    dx * D17)))))))))))));
2563ffff4baSSteve Kargl 		}
2573ffff4baSSteve Kargl 
2583ffff4baSSteve Kargl 		x_hi = (float)x;
2593ffff4baSSteve Kargl 		x_lo = x - x_hi;
2603ffff4baSSteve Kargl 		hx2_hi = x_hi * x_hi / 2;
2613ffff4baSSteve Kargl 		hx2_lo = x_lo * (x + x_hi) / 2;
2623ffff4baSSteve Kargl 		if (ix >= BIAS - 7)
2635f63fbd6SSteve Kargl 			RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
2643ffff4baSSteve Kargl 		else
2655f63fbd6SSteve Kargl 			RETURN2PI(x, hx2_lo + q + hx2_hi);
2663ffff4baSSteve Kargl 	}
2673ffff4baSSteve Kargl 
2683ffff4baSSteve Kargl 	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
2693ffff4baSSteve Kargl 	/* Use a specialized rint() to get fn.  Assume round-to-nearest. */
2703ffff4baSSteve Kargl 	fn = (double)x * INV_L + 0x1.8p52 - 0x1.8p52;
2713ffff4baSSteve Kargl #if defined(HAVE_EFFICIENT_IRINT)
2723ffff4baSSteve Kargl 	n = irint(fn);
2733ffff4baSSteve Kargl #else
2743ffff4baSSteve Kargl 	n = (int)fn;
2753ffff4baSSteve Kargl #endif
2763ffff4baSSteve Kargl 	n2 = (unsigned)n % INTERVALS;
2773ffff4baSSteve Kargl 	k = n >> LOG2_INTERVALS;
2783ffff4baSSteve Kargl 	r1 = x - fn * L1;
2793ffff4baSSteve Kargl 	r2 = fn * -L2;
2803ffff4baSSteve Kargl 	r = r1 + r2;
2813ffff4baSSteve Kargl 
2823ffff4baSSteve Kargl 	/* Prepare scale factor. */
2833ffff4baSSteve Kargl 	v.e = 1;
2843ffff4baSSteve Kargl 	v.xbits.expsign = BIAS + k;
2853ffff4baSSteve Kargl 	twopk = v.e;
2863ffff4baSSteve Kargl 
2873ffff4baSSteve Kargl 	/*
2883ffff4baSSteve Kargl 	 * Evaluate lower terms of
2893ffff4baSSteve Kargl 	 * expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
2903ffff4baSSteve Kargl 	 */
2913ffff4baSSteve Kargl 	dr = r;
2923ffff4baSSteve Kargl 	q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
2933ffff4baSSteve Kargl 	    dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
2943ffff4baSSteve Kargl 
2953ffff4baSSteve Kargl 	t = tbl[n2].lo + tbl[n2].hi;
2963ffff4baSSteve Kargl 
2973ffff4baSSteve Kargl 	if (k == 0) {
2985f63fbd6SSteve Kargl 		t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
2995f63fbd6SSteve Kargl 		    tbl[n2].hi * r1);
3003ffff4baSSteve Kargl 		RETURNI(t);
3013ffff4baSSteve Kargl 	}
3023ffff4baSSteve Kargl 	if (k == -1) {
3035f63fbd6SSteve Kargl 		t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
3045f63fbd6SSteve Kargl 		    tbl[n2].hi * r1);
3053ffff4baSSteve Kargl 		RETURNI(t / 2);
3063ffff4baSSteve Kargl 	}
3073ffff4baSSteve Kargl 	if (k < -7) {
3085f63fbd6SSteve Kargl 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
3093ffff4baSSteve Kargl 		RETURNI(t * twopk - 1);
3103ffff4baSSteve Kargl 	}
3113ffff4baSSteve Kargl 	if (k > 2 * LDBL_MANT_DIG - 1) {
3125f63fbd6SSteve Kargl 		t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
3133ffff4baSSteve Kargl 		if (k == LDBL_MAX_EXP)
3143ffff4baSSteve Kargl 			RETURNI(t * 2 * 0x1p16383L - 1);
3153ffff4baSSteve Kargl 		RETURNI(t * twopk - 1);
3163ffff4baSSteve Kargl 	}
3173ffff4baSSteve Kargl 
3183ffff4baSSteve Kargl 	v.xbits.expsign = BIAS - k;
3193ffff4baSSteve Kargl 	twomk = v.e;
3203ffff4baSSteve Kargl 
3213ffff4baSSteve Kargl 	if (k > LDBL_MANT_DIG - 1)
3225f63fbd6SSteve Kargl 		t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
3233ffff4baSSteve Kargl 	else
3245f63fbd6SSteve Kargl 		t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
3253ffff4baSSteve Kargl 	RETURNI(t * twopk);
3263ffff4baSSteve Kargl }
327