xref: /freebsd/lib/msun/ld128/s_cexpl.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019 Steven G. Kargl <kargl@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <complex.h>
31 #include <float.h>
32 #include <math.h>
33 
34 #include "fpmath.h"
35 #include "math_private.h"
36 #include "k_expl.h"
37 
38 /* XXX cexpl() should be converted to use bits likeo src/s_cexp.c. */
39 
40 static const long double
41 cexp_ovfl = 2.27892930024498818830197576893019292e+04L,
42 exp_ovfl = 1.13565234062941439494919310779707649e+04L;
43 
44 long double complex
45 cexpl(long double complex z)
46 {
47 	long double c, exp_x, s, x, y;
48 
49 	x = creall(z);
50 	y = cimagl(z);
51 
52 	/* cexp(x + I 0) = exp(x) + I 0 */
53 	if (y == 0)
54 		return (CMPLXL(expl(x), y));
55 	/* cexp(0 + I y) = cos(y) + I sin(y) */
56 	if (x == 0) {
57 		sincosl(y, &s, &c);
58 		return (CMPLXL(c, s));
59 	}
60 
61 	if (!isfinite(y)) {
62 		if (isfinite(x) || isnan(x)) {
63 			/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
64 			return (CMPLXL(y - y, y - y));
65 		} else if (isinf(x) && copysignl(1.L, x) < 0) {
66 			/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
67 			return (CMPLXL(0.0, 0.0));
68 		} else {
69 			/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
70 			return (CMPLXL(x, y - y));
71 		}
72 	}
73 
74 	if (x > exp_ovfl && x < cexp_ovfl) {
75 		/*
76 		 * x is between exp_ovfl and cexp_ovfl, so we must scale to
77 		 * avoid overflow in exp(x).
78 		 */
79 		return (__ldexp_cexpl(z, 0));
80 	} else {
81 		/*
82 		 * Cases covered here:
83 		 *  -  x < exp_ovfl and exp(x) won't overflow (common case)
84 		 *  -  x > cexp_ovfl, so exp(x) * s overflows for all s > 0
85 		 *  -  x = +-Inf (generated by exp())
86 		 *  -  x = NaN (spurious inexact exception from y)
87 		 */
88 		exp_x = expl(x);
89 		sincosl(y, &s, &c);
90 		return (CMPLXL(exp_x * c, exp_x * s));
91 	}
92 }
93