xref: /freebsd/lib/msun/ld128/k_sinl.c (revision db33c6f3ae9d1231087710068ee4ea5398aacca7)
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /*
14  * ld128 version of k_sin.c.  See ../src/k_sin.c for most comments.
15  */
16 
17 #include "math_private.h"
18 
19 static const double
20 half =  0.5;
21 
22 /*
23  * Domain [-0.7854, 0.7854], range ~[-1.53e-37, 1.659e-37]
24  * |sin(x)/x - s(x)| < 2**-122.1
25  *
26  * See ../ld80/k_cosl.c for more details about the polynomial.
27  */
28 static const long double
29 S1 = -0.16666666666666666666666666666666666606732416116558L,
30 S2 =  0.0083333333333333333333333333333331135404851288270047L,
31 S3 = -0.00019841269841269841269841269839935785325638310428717L,
32 S4 =  0.27557319223985890652557316053039946268333231205686e-5L,
33 S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
34 S6 =  0.16059043836821614596571832194524392581082444805729e-9L,
35 S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
36 S8 =  0.28114572543451292625024967174638477283187397621303e-14L;
37 
38 static const double
39 S9  = -0.82206352458348947812512122163446202498005154296863e-17,
40 S10 =  0.19572940011906109418080609928334380560135358385256e-19,
41 S11 = -0.38680813379701966970673724299207480965452616911420e-22,
42 S12 =  0.64038150078671872796678569586315881020659912139412e-25;
43 
44 long double
45 __kernel_sinl(long double x, long double y, int iy)
46 {
47 	long double z,r,v;
48 
49 	z	=  x*x;
50 	v	=  z*x;
51 	r	=  S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*(S8+
52 	    z*(S9+z*(S10+z*(S11+z*S12)))))))));
53 	if(iy==0) return x+v*(S1+z*r);
54 	else      return x-((z*(half*y-v*r)-y)-v*S1);
55 }
56