xref: /freebsd/lib/msun/ld128/e_powl.c (revision 96190b4fef3b4a0cc3ca0606b0c4e3e69a5e6717)
1 /*-
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
14  *
15  * Permission to use, copy, modify, and distribute this software for any
16  * purpose with or without fee is hereby granted, provided that the above
17  * copyright notice and this permission notice appear in all copies.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26  */
27 
28 /* powl(x,y) return x**y
29  *
30  *		      n
31  * Method:  Let x =  2   * (1+f)
32  *	1. Compute and return log2(x) in two pieces:
33  *		log2(x) = w1 + w2,
34  *	   where w1 has 113-53 = 60 bit trailing zeros.
35  *	2. Perform y*log2(x) = n+y' by simulating multi-precision
36  *	   arithmetic, where |y'|<=0.5.
37  *	3. Return x**y = 2**n*exp(y'*log2)
38  *
39  * Special cases:
40  *	1.  (anything) ** 0  is 1
41  *	2.  (anything) ** 1  is itself
42  *	3.  (anything) ** NAN is NAN
43  *	4.  NAN ** (anything except 0) is NAN
44  *	5.  +-(|x| > 1) **  +INF is +INF
45  *	6.  +-(|x| > 1) **  -INF is +0
46  *	7.  +-(|x| < 1) **  +INF is +0
47  *	8.  +-(|x| < 1) **  -INF is +INF
48  *	9.  +-1         ** +-INF is NAN
49  *	10. +0 ** (+anything except 0, NAN)               is +0
50  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
51  *	12. +0 ** (-anything except 0, NAN)               is +INF
52  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
53  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
54  *	15. +INF ** (+anything except 0,NAN) is +INF
55  *	16. +INF ** (-anything except 0,NAN) is +0
56  *	17. -INF ** (anything)  = -0 ** (-anything)
57  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
58  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
59  *
60  */
61 
62 #include <float.h>
63 #include <math.h>
64 
65 #include "math_private.h"
66 
67 static const long double bp[] = {
68   1.0L,
69   1.5L,
70 };
71 
72 /* log_2(1.5) */
73 static const long double dp_h[] = {
74   0.0,
75   5.8496250072115607565592654282227158546448E-1L
76 };
77 
78 /* Low part of log_2(1.5) */
79 static const long double dp_l[] = {
80   0.0,
81   1.0579781240112554492329533686862998106046E-16L
82 };
83 
84 static const long double zero = 0.0L,
85   one = 1.0L,
86   two = 2.0L,
87   two113 = 1.0384593717069655257060992658440192E34L,
88   huge = 1.0e3000L,
89   tiny = 1.0e-3000L;
90 
91 /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
92    z = (x-1)/(x+1)
93    1 <= x <= 1.25
94    Peak relative error 2.3e-37 */
95 static const long double LN[] =
96 {
97  -3.0779177200290054398792536829702930623200E1L,
98   6.5135778082209159921251824580292116201640E1L,
99  -4.6312921812152436921591152809994014413540E1L,
100   1.2510208195629420304615674658258363295208E1L,
101  -9.9266909031921425609179910128531667336670E-1L
102 };
103 static const long double LD[] =
104 {
105  -5.129862866715009066465422805058933131960E1L,
106   1.452015077564081884387441590064272782044E2L,
107  -1.524043275549860505277434040464085593165E2L,
108   7.236063513651544224319663428634139768808E1L,
109  -1.494198912340228235853027849917095580053E1L
110   /* 1.0E0 */
111 };
112 
113 /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
114    0 <= x <= 0.5
115    Peak relative error 5.7e-38  */
116 static const long double PN[] =
117 {
118   5.081801691915377692446852383385968225675E8L,
119   9.360895299872484512023336636427675327355E6L,
120   4.213701282274196030811629773097579432957E4L,
121   5.201006511142748908655720086041570288182E1L,
122   9.088368420359444263703202925095675982530E-3L,
123 };
124 static const long double PD[] =
125 {
126   3.049081015149226615468111430031590411682E9L,
127   1.069833887183886839966085436512368982758E8L,
128   8.259257717868875207333991924545445705394E5L,
129   1.872583833284143212651746812884298360922E3L,
130   /* 1.0E0 */
131 };
132 
133 static const long double
134   /* ln 2 */
135   lg2 = 6.9314718055994530941723212145817656807550E-1L,
136   lg2_h = 6.9314718055994528622676398299518041312695E-1L,
137   lg2_l = 2.3190468138462996154948554638754786504121E-17L,
138   ovt = 8.0085662595372944372e-0017L,
139   /* 2/(3*log(2)) */
140   cp = 9.6179669392597560490661645400126142495110E-1L,
141   cp_h = 9.6179669392597555432899980587535537779331E-1L,
142   cp_l = 5.0577616648125906047157785230014751039424E-17L;
143 
144 long double
145 powl(long double x, long double y)
146 {
147   long double z, ax, z_h, z_l, p_h, p_l;
148   long double yy1, t1, t2, r, s, t, u, v, w;
149   long double s2, s_h, s_l, t_h, t_l;
150   int32_t i, j, k, yisint, n;
151   u_int32_t ix, iy;
152   int32_t hx, hy;
153   ieee_quad_shape_type o, p, q;
154 
155   p.value = x;
156   hx = p.parts32.mswhi;
157   ix = hx & 0x7fffffff;
158 
159   q.value = y;
160   hy = q.parts32.mswhi;
161   iy = hy & 0x7fffffff;
162 
163 
164   /* y==zero: x**0 = 1 */
165   if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
166     return one;
167 
168   /* 1.0**y = 1; -1.0**+-Inf = 1 */
169   if (x == one)
170     return one;
171   if (x == -1.0L && iy == 0x7fff0000
172       && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
173     return one;
174 
175   /* +-NaN return x+y */
176   if ((ix > 0x7fff0000)
177       || ((ix == 0x7fff0000)
178 	  && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
179       || (iy > 0x7fff0000)
180       || ((iy == 0x7fff0000)
181 	  && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
182     return nan_mix(x, y);
183 
184   /* determine if y is an odd int when x < 0
185    * yisint = 0       ... y is not an integer
186    * yisint = 1       ... y is an odd int
187    * yisint = 2       ... y is an even int
188    */
189   yisint = 0;
190   if (hx < 0)
191     {
192       if (iy >= 0x40700000)	/* 2^113 */
193 	yisint = 2;		/* even integer y */
194       else if (iy >= 0x3fff0000)	/* 1.0 */
195 	{
196 	  if (floorl (y) == y)
197 	    {
198 	      z = 0.5 * y;
199 	      if (floorl (z) == z)
200 		yisint = 2;
201 	      else
202 		yisint = 1;
203 	    }
204 	}
205     }
206 
207   /* special value of y */
208   if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
209     {
210       if (iy == 0x7fff0000)	/* y is +-inf */
211 	{
212 	  if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
213 	    p.parts32.lswlo) == 0)
214 	    return y - y;	/* +-1**inf is NaN */
215 	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */
216 	    return (hy >= 0) ? y : zero;
217 	  else			/* (|x|<1)**-,+inf = inf,0 */
218 	    return (hy < 0) ? -y : zero;
219 	}
220       if (iy == 0x3fff0000)
221 	{			/* y is  +-1 */
222 	  if (hy < 0)
223 	    return one / x;
224 	  else
225 	    return x;
226 	}
227       if (hy == 0x40000000)
228 	return x * x;		/* y is  2 */
229       if (hy == 0x3ffe0000)
230 	{			/* y is  0.5 */
231 	  if (hx >= 0)		/* x >= +0 */
232 	    return sqrtl (x);
233 	}
234     }
235 
236   ax = fabsl (x);
237   /* special value of x */
238   if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
239     {
240       if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
241 	{
242 	  z = ax;		/*x is +-0,+-inf,+-1 */
243 	  if (hy < 0)
244 	    z = one / z;	/* z = (1/|x|) */
245 	  if (hx < 0)
246 	    {
247 	      if (((ix - 0x3fff0000) | yisint) == 0)
248 		{
249 		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */
250 		}
251 	      else if (yisint == 1)
252 		z = -z;		/* (x<0)**odd = -(|x|**odd) */
253 	    }
254 	  return z;
255 	}
256     }
257 
258   /* (x<0)**(non-int) is NaN */
259   if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
260     return (x - x) / (x - x);
261 
262   /* |y| is huge.
263      2^-16495 = 1/2 of smallest representable value.
264      If (1 - 1/131072)^y underflows, y > 1.4986e9 */
265   if (iy > 0x401d654b)
266     {
267       /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
268       if (iy > 0x407d654b)
269 	{
270 	  if (ix <= 0x3ffeffff)
271 	    return (hy < 0) ? huge * huge : tiny * tiny;
272 	  if (ix >= 0x3fff0000)
273 	    return (hy > 0) ? huge * huge : tiny * tiny;
274 	}
275       /* over/underflow if x is not close to one */
276       if (ix < 0x3ffeffff)
277 	return (hy < 0) ? huge * huge : tiny * tiny;
278       if (ix > 0x3fff0000)
279 	return (hy > 0) ? huge * huge : tiny * tiny;
280     }
281 
282   n = 0;
283   /* take care subnormal number */
284   if (ix < 0x00010000)
285     {
286       ax *= two113;
287       n -= 113;
288       o.value = ax;
289       ix = o.parts32.mswhi;
290     }
291   n += ((ix) >> 16) - 0x3fff;
292   j = ix & 0x0000ffff;
293   /* determine interval */
294   ix = j | 0x3fff0000;		/* normalize ix */
295   if (j <= 0x3988)
296     k = 0;			/* |x|<sqrt(3/2) */
297   else if (j < 0xbb67)
298     k = 1;			/* |x|<sqrt(3)   */
299   else
300     {
301       k = 0;
302       n += 1;
303       ix -= 0x00010000;
304     }
305 
306   o.value = ax;
307   o.parts32.mswhi = ix;
308   ax = o.value;
309 
310   /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
311   u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
312   v = one / (ax + bp[k]);
313   s = u * v;
314   s_h = s;
315 
316   o.value = s_h;
317   o.parts32.lswlo = 0;
318   o.parts32.lswhi &= 0xf8000000;
319   s_h = o.value;
320   /* t_h=ax+bp[k] High */
321   t_h = ax + bp[k];
322   o.value = t_h;
323   o.parts32.lswlo = 0;
324   o.parts32.lswhi &= 0xf8000000;
325   t_h = o.value;
326   t_l = ax - (t_h - bp[k]);
327   s_l = v * ((u - s_h * t_h) - s_h * t_l);
328   /* compute log(ax) */
329   s2 = s * s;
330   u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
331   v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
332   r = s2 * s2 * u / v;
333   r += s_l * (s_h + s);
334   s2 = s_h * s_h;
335   t_h = 3.0 + s2 + r;
336   o.value = t_h;
337   o.parts32.lswlo = 0;
338   o.parts32.lswhi &= 0xf8000000;
339   t_h = o.value;
340   t_l = r - ((t_h - 3.0) - s2);
341   /* u+v = s*(1+...) */
342   u = s_h * t_h;
343   v = s_l * t_h + t_l * s;
344   /* 2/(3log2)*(s+...) */
345   p_h = u + v;
346   o.value = p_h;
347   o.parts32.lswlo = 0;
348   o.parts32.lswhi &= 0xf8000000;
349   p_h = o.value;
350   p_l = v - (p_h - u);
351   z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
352   z_l = cp_l * p_h + p_l * cp + dp_l[k];
353   /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
354   t = (long double) n;
355   t1 = (((z_h + z_l) + dp_h[k]) + t);
356   o.value = t1;
357   o.parts32.lswlo = 0;
358   o.parts32.lswhi &= 0xf8000000;
359   t1 = o.value;
360   t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
361 
362   /* s (sign of result -ve**odd) = -1 else = 1 */
363   s = one;
364   if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
365     s = -one;			/* (-ve)**(odd int) */
366 
367   /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
368   yy1 = y;
369   o.value = yy1;
370   o.parts32.lswlo = 0;
371   o.parts32.lswhi &= 0xf8000000;
372   yy1 = o.value;
373   p_l = (y - yy1) * t1 + y * t2;
374   p_h = yy1 * t1;
375   z = p_l + p_h;
376   o.value = z;
377   j = o.parts32.mswhi;
378   if (j >= 0x400d0000) /* z >= 16384 */
379     {
380       /* if z > 16384 */
381       if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
382 	o.parts32.lswlo) != 0)
383 	return s * huge * huge;	/* overflow */
384       else
385 	{
386 	  if (p_l + ovt > z - p_h)
387 	    return s * huge * huge;	/* overflow */
388 	}
389     }
390   else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */
391     {
392       /* z < -16495 */
393       if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
394 	o.parts32.lswlo)
395 	  != 0)
396 	return s * tiny * tiny;	/* underflow */
397       else
398 	{
399 	  if (p_l <= z - p_h)
400 	    return s * tiny * tiny;	/* underflow */
401 	}
402     }
403   /* compute 2**(p_h+p_l) */
404   i = j & 0x7fffffff;
405   k = (i >> 16) - 0x3fff;
406   n = 0;
407   if (i > 0x3ffe0000)
408     {				/* if |z| > 0.5, set n = [z+0.5] */
409       n = floorl (z + 0.5L);
410       t = n;
411       p_h -= t;
412     }
413   t = p_l + p_h;
414   o.value = t;
415   o.parts32.lswlo = 0;
416   o.parts32.lswhi &= 0xf8000000;
417   t = o.value;
418   u = t * lg2_h;
419   v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
420   z = u + v;
421   w = v - (z - u);
422   /*  exp(z) */
423   t = z * z;
424   u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
425   v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
426   t1 = z - t * u / v;
427   r = (z * t1) / (t1 - two) - (w + z * w);
428   z = one - (r - z);
429   o.value = z;
430   j = o.parts32.mswhi;
431   j += (n << 16);
432   if ((j >> 16) <= 0)
433     z = scalbnl (z, n);	/* subnormal output */
434   else
435     {
436       o.parts32.mswhi = j;
437       z = o.value;
438     }
439   return s * z;
440 }
441