xref: /freebsd/lib/msun/ld128/e_powl.c (revision 78b9f0095b4af3aca6c931b2c7b009ddb8a05125)
1 /*-
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
14  *
15  * Permission to use, copy, modify, and distribute this software for any
16  * purpose with or without fee is hereby granted, provided that the above
17  * copyright notice and this permission notice appear in all copies.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26  */
27 
28 /* powl(x,y) return x**y
29  *
30  *		      n
31  * Method:  Let x =  2   * (1+f)
32  *	1. Compute and return log2(x) in two pieces:
33  *		log2(x) = w1 + w2,
34  *	   where w1 has 113-53 = 60 bit trailing zeros.
35  *	2. Perform y*log2(x) = n+y' by simulating muti-precision
36  *	   arithmetic, where |y'|<=0.5.
37  *	3. Return x**y = 2**n*exp(y'*log2)
38  *
39  * Special cases:
40  *	1.  (anything) ** 0  is 1
41  *	2.  (anything) ** 1  is itself
42  *	3.  (anything) ** NAN is NAN
43  *	4.  NAN ** (anything except 0) is NAN
44  *	5.  +-(|x| > 1) **  +INF is +INF
45  *	6.  +-(|x| > 1) **  -INF is +0
46  *	7.  +-(|x| < 1) **  +INF is +0
47  *	8.  +-(|x| < 1) **  -INF is +INF
48  *	9.  +-1         ** +-INF is NAN
49  *	10. +0 ** (+anything except 0, NAN)               is +0
50  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
51  *	12. +0 ** (-anything except 0, NAN)               is +INF
52  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
53  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
54  *	15. +INF ** (+anything except 0,NAN) is +INF
55  *	16. +INF ** (-anything except 0,NAN) is +0
56  *	17. -INF ** (anything)  = -0 ** (-anything)
57  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
58  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
59  *
60  */
61 
62 #include <sys/cdefs.h>
63 __FBSDID("$FreeBSD$");
64 
65 #include <float.h>
66 #include <math.h>
67 
68 #include "math_private.h"
69 
70 static const long double bp[] = {
71   1.0L,
72   1.5L,
73 };
74 
75 /* log_2(1.5) */
76 static const long double dp_h[] = {
77   0.0,
78   5.8496250072115607565592654282227158546448E-1L
79 };
80 
81 /* Low part of log_2(1.5) */
82 static const long double dp_l[] = {
83   0.0,
84   1.0579781240112554492329533686862998106046E-16L
85 };
86 
87 static const long double zero = 0.0L,
88   one = 1.0L,
89   two = 2.0L,
90   two113 = 1.0384593717069655257060992658440192E34L,
91   huge = 1.0e3000L,
92   tiny = 1.0e-3000L;
93 
94 /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
95    z = (x-1)/(x+1)
96    1 <= x <= 1.25
97    Peak relative error 2.3e-37 */
98 static const long double LN[] =
99 {
100  -3.0779177200290054398792536829702930623200E1L,
101   6.5135778082209159921251824580292116201640E1L,
102  -4.6312921812152436921591152809994014413540E1L,
103   1.2510208195629420304615674658258363295208E1L,
104  -9.9266909031921425609179910128531667336670E-1L
105 };
106 static const long double LD[] =
107 {
108  -5.129862866715009066465422805058933131960E1L,
109   1.452015077564081884387441590064272782044E2L,
110  -1.524043275549860505277434040464085593165E2L,
111   7.236063513651544224319663428634139768808E1L,
112  -1.494198912340228235853027849917095580053E1L
113   /* 1.0E0 */
114 };
115 
116 /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
117    0 <= x <= 0.5
118    Peak relative error 5.7e-38  */
119 static const long double PN[] =
120 {
121   5.081801691915377692446852383385968225675E8L,
122   9.360895299872484512023336636427675327355E6L,
123   4.213701282274196030811629773097579432957E4L,
124   5.201006511142748908655720086041570288182E1L,
125   9.088368420359444263703202925095675982530E-3L,
126 };
127 static const long double PD[] =
128 {
129   3.049081015149226615468111430031590411682E9L,
130   1.069833887183886839966085436512368982758E8L,
131   8.259257717868875207333991924545445705394E5L,
132   1.872583833284143212651746812884298360922E3L,
133   /* 1.0E0 */
134 };
135 
136 static const long double
137   /* ln 2 */
138   lg2 = 6.9314718055994530941723212145817656807550E-1L,
139   lg2_h = 6.9314718055994528622676398299518041312695E-1L,
140   lg2_l = 2.3190468138462996154948554638754786504121E-17L,
141   ovt = 8.0085662595372944372e-0017L,
142   /* 2/(3*log(2)) */
143   cp = 9.6179669392597560490661645400126142495110E-1L,
144   cp_h = 9.6179669392597555432899980587535537779331E-1L,
145   cp_l = 5.0577616648125906047157785230014751039424E-17L;
146 
147 long double
148 powl(long double x, long double y)
149 {
150   long double z, ax, z_h, z_l, p_h, p_l;
151   long double yy1, t1, t2, r, s, t, u, v, w;
152   long double s2, s_h, s_l, t_h, t_l;
153   int32_t i, j, k, yisint, n;
154   u_int32_t ix, iy;
155   int32_t hx, hy;
156   ieee_quad_shape_type o, p, q;
157 
158   p.value = x;
159   hx = p.parts32.mswhi;
160   ix = hx & 0x7fffffff;
161 
162   q.value = y;
163   hy = q.parts32.mswhi;
164   iy = hy & 0x7fffffff;
165 
166 
167   /* y==zero: x**0 = 1 */
168   if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
169     return one;
170 
171   /* 1.0**y = 1; -1.0**+-Inf = 1 */
172   if (x == one)
173     return one;
174   if (x == -1.0L && iy == 0x7fff0000
175       && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
176     return one;
177 
178   /* +-NaN return x+y */
179   if ((ix > 0x7fff0000)
180       || ((ix == 0x7fff0000)
181 	  && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
182       || (iy > 0x7fff0000)
183       || ((iy == 0x7fff0000)
184 	  && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
185     return nan_mix(x, y);
186 
187   /* determine if y is an odd int when x < 0
188    * yisint = 0       ... y is not an integer
189    * yisint = 1       ... y is an odd int
190    * yisint = 2       ... y is an even int
191    */
192   yisint = 0;
193   if (hx < 0)
194     {
195       if (iy >= 0x40700000)	/* 2^113 */
196 	yisint = 2;		/* even integer y */
197       else if (iy >= 0x3fff0000)	/* 1.0 */
198 	{
199 	  if (floorl (y) == y)
200 	    {
201 	      z = 0.5 * y;
202 	      if (floorl (z) == z)
203 		yisint = 2;
204 	      else
205 		yisint = 1;
206 	    }
207 	}
208     }
209 
210   /* special value of y */
211   if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
212     {
213       if (iy == 0x7fff0000)	/* y is +-inf */
214 	{
215 	  if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
216 	    p.parts32.lswlo) == 0)
217 	    return y - y;	/* +-1**inf is NaN */
218 	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */
219 	    return (hy >= 0) ? y : zero;
220 	  else			/* (|x|<1)**-,+inf = inf,0 */
221 	    return (hy < 0) ? -y : zero;
222 	}
223       if (iy == 0x3fff0000)
224 	{			/* y is  +-1 */
225 	  if (hy < 0)
226 	    return one / x;
227 	  else
228 	    return x;
229 	}
230       if (hy == 0x40000000)
231 	return x * x;		/* y is  2 */
232       if (hy == 0x3ffe0000)
233 	{			/* y is  0.5 */
234 	  if (hx >= 0)		/* x >= +0 */
235 	    return sqrtl (x);
236 	}
237     }
238 
239   ax = fabsl (x);
240   /* special value of x */
241   if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
242     {
243       if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
244 	{
245 	  z = ax;		/*x is +-0,+-inf,+-1 */
246 	  if (hy < 0)
247 	    z = one / z;	/* z = (1/|x|) */
248 	  if (hx < 0)
249 	    {
250 	      if (((ix - 0x3fff0000) | yisint) == 0)
251 		{
252 		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */
253 		}
254 	      else if (yisint == 1)
255 		z = -z;		/* (x<0)**odd = -(|x|**odd) */
256 	    }
257 	  return z;
258 	}
259     }
260 
261   /* (x<0)**(non-int) is NaN */
262   if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
263     return (x - x) / (x - x);
264 
265   /* |y| is huge.
266      2^-16495 = 1/2 of smallest representable value.
267      If (1 - 1/131072)^y underflows, y > 1.4986e9 */
268   if (iy > 0x401d654b)
269     {
270       /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
271       if (iy > 0x407d654b)
272 	{
273 	  if (ix <= 0x3ffeffff)
274 	    return (hy < 0) ? huge * huge : tiny * tiny;
275 	  if (ix >= 0x3fff0000)
276 	    return (hy > 0) ? huge * huge : tiny * tiny;
277 	}
278       /* over/underflow if x is not close to one */
279       if (ix < 0x3ffeffff)
280 	return (hy < 0) ? huge * huge : tiny * tiny;
281       if (ix > 0x3fff0000)
282 	return (hy > 0) ? huge * huge : tiny * tiny;
283     }
284 
285   n = 0;
286   /* take care subnormal number */
287   if (ix < 0x00010000)
288     {
289       ax *= two113;
290       n -= 113;
291       o.value = ax;
292       ix = o.parts32.mswhi;
293     }
294   n += ((ix) >> 16) - 0x3fff;
295   j = ix & 0x0000ffff;
296   /* determine interval */
297   ix = j | 0x3fff0000;		/* normalize ix */
298   if (j <= 0x3988)
299     k = 0;			/* |x|<sqrt(3/2) */
300   else if (j < 0xbb67)
301     k = 1;			/* |x|<sqrt(3)   */
302   else
303     {
304       k = 0;
305       n += 1;
306       ix -= 0x00010000;
307     }
308 
309   o.value = ax;
310   o.parts32.mswhi = ix;
311   ax = o.value;
312 
313   /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
314   u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
315   v = one / (ax + bp[k]);
316   s = u * v;
317   s_h = s;
318 
319   o.value = s_h;
320   o.parts32.lswlo = 0;
321   o.parts32.lswhi &= 0xf8000000;
322   s_h = o.value;
323   /* t_h=ax+bp[k] High */
324   t_h = ax + bp[k];
325   o.value = t_h;
326   o.parts32.lswlo = 0;
327   o.parts32.lswhi &= 0xf8000000;
328   t_h = o.value;
329   t_l = ax - (t_h - bp[k]);
330   s_l = v * ((u - s_h * t_h) - s_h * t_l);
331   /* compute log(ax) */
332   s2 = s * s;
333   u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
334   v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
335   r = s2 * s2 * u / v;
336   r += s_l * (s_h + s);
337   s2 = s_h * s_h;
338   t_h = 3.0 + s2 + r;
339   o.value = t_h;
340   o.parts32.lswlo = 0;
341   o.parts32.lswhi &= 0xf8000000;
342   t_h = o.value;
343   t_l = r - ((t_h - 3.0) - s2);
344   /* u+v = s*(1+...) */
345   u = s_h * t_h;
346   v = s_l * t_h + t_l * s;
347   /* 2/(3log2)*(s+...) */
348   p_h = u + v;
349   o.value = p_h;
350   o.parts32.lswlo = 0;
351   o.parts32.lswhi &= 0xf8000000;
352   p_h = o.value;
353   p_l = v - (p_h - u);
354   z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
355   z_l = cp_l * p_h + p_l * cp + dp_l[k];
356   /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
357   t = (long double) n;
358   t1 = (((z_h + z_l) + dp_h[k]) + t);
359   o.value = t1;
360   o.parts32.lswlo = 0;
361   o.parts32.lswhi &= 0xf8000000;
362   t1 = o.value;
363   t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
364 
365   /* s (sign of result -ve**odd) = -1 else = 1 */
366   s = one;
367   if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
368     s = -one;			/* (-ve)**(odd int) */
369 
370   /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
371   yy1 = y;
372   o.value = yy1;
373   o.parts32.lswlo = 0;
374   o.parts32.lswhi &= 0xf8000000;
375   yy1 = o.value;
376   p_l = (y - yy1) * t1 + y * t2;
377   p_h = yy1 * t1;
378   z = p_l + p_h;
379   o.value = z;
380   j = o.parts32.mswhi;
381   if (j >= 0x400d0000) /* z >= 16384 */
382     {
383       /* if z > 16384 */
384       if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
385 	o.parts32.lswlo) != 0)
386 	return s * huge * huge;	/* overflow */
387       else
388 	{
389 	  if (p_l + ovt > z - p_h)
390 	    return s * huge * huge;	/* overflow */
391 	}
392     }
393   else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */
394     {
395       /* z < -16495 */
396       if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
397 	o.parts32.lswlo)
398 	  != 0)
399 	return s * tiny * tiny;	/* underflow */
400       else
401 	{
402 	  if (p_l <= z - p_h)
403 	    return s * tiny * tiny;	/* underflow */
404 	}
405     }
406   /* compute 2**(p_h+p_l) */
407   i = j & 0x7fffffff;
408   k = (i >> 16) - 0x3fff;
409   n = 0;
410   if (i > 0x3ffe0000)
411     {				/* if |z| > 0.5, set n = [z+0.5] */
412       n = floorl (z + 0.5L);
413       t = n;
414       p_h -= t;
415     }
416   t = p_l + p_h;
417   o.value = t;
418   o.parts32.lswlo = 0;
419   o.parts32.lswhi &= 0xf8000000;
420   t = o.value;
421   u = t * lg2_h;
422   v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
423   z = u + v;
424   w = v - (z - u);
425   /*  exp(z) */
426   t = z * z;
427   u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
428   v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
429   t1 = z - t * u / v;
430   r = (z * t1) / (t1 - two) - (w + z * w);
431   z = one - (r - z);
432   o.value = z;
433   j = o.parts32.mswhi;
434   j += (n << 16);
435   if ((j >> 16) <= 0)
436     z = scalbnl (z, n);	/* subnormal output */
437   else
438     {
439       o.parts32.mswhi = j;
440       z = o.value;
441     }
442   return s * z;
443 }
444