xref: /freebsd/lib/msun/ld128/e_powl.c (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 /*-
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
14  *
15  * Permission to use, copy, modify, and distribute this software for any
16  * purpose with or without fee is hereby granted, provided that the above
17  * copyright notice and this permission notice appear in all copies.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26  */
27 
28 /* powl(x,y) return x**y
29  *
30  *		      n
31  * Method:  Let x =  2   * (1+f)
32  *	1. Compute and return log2(x) in two pieces:
33  *		log2(x) = w1 + w2,
34  *	   where w1 has 113-53 = 60 bit trailing zeros.
35  *	2. Perform y*log2(x) = n+y' by simulating multi-precision
36  *	   arithmetic, where |y'|<=0.5.
37  *	3. Return x**y = 2**n*exp(y'*log2)
38  *
39  * Special cases:
40  *	1.  (anything) ** 0  is 1
41  *	2.  (anything) ** 1  is itself
42  *	3.  (anything) ** NAN is NAN
43  *	4.  NAN ** (anything except 0) is NAN
44  *	5.  +-(|x| > 1) **  +INF is +INF
45  *	6.  +-(|x| > 1) **  -INF is +0
46  *	7.  +-(|x| < 1) **  +INF is +0
47  *	8.  +-(|x| < 1) **  -INF is +INF
48  *	9.  +-1         ** +-INF is NAN
49  *	10. +0 ** (+anything except 0, NAN)               is +0
50  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
51  *	12. +0 ** (-anything except 0, NAN)               is +INF
52  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
53  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
54  *	15. +INF ** (+anything except 0,NAN) is +INF
55  *	16. +INF ** (-anything except 0,NAN) is +0
56  *	17. -INF ** (anything)  = -0 ** (-anything)
57  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
58  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
59  *
60  */
61 
62 #include <sys/cdefs.h>
63 #include <float.h>
64 #include <math.h>
65 
66 #include "math_private.h"
67 
68 static const long double bp[] = {
69   1.0L,
70   1.5L,
71 };
72 
73 /* log_2(1.5) */
74 static const long double dp_h[] = {
75   0.0,
76   5.8496250072115607565592654282227158546448E-1L
77 };
78 
79 /* Low part of log_2(1.5) */
80 static const long double dp_l[] = {
81   0.0,
82   1.0579781240112554492329533686862998106046E-16L
83 };
84 
85 static const long double zero = 0.0L,
86   one = 1.0L,
87   two = 2.0L,
88   two113 = 1.0384593717069655257060992658440192E34L,
89   huge = 1.0e3000L,
90   tiny = 1.0e-3000L;
91 
92 /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
93    z = (x-1)/(x+1)
94    1 <= x <= 1.25
95    Peak relative error 2.3e-37 */
96 static const long double LN[] =
97 {
98  -3.0779177200290054398792536829702930623200E1L,
99   6.5135778082209159921251824580292116201640E1L,
100  -4.6312921812152436921591152809994014413540E1L,
101   1.2510208195629420304615674658258363295208E1L,
102  -9.9266909031921425609179910128531667336670E-1L
103 };
104 static const long double LD[] =
105 {
106  -5.129862866715009066465422805058933131960E1L,
107   1.452015077564081884387441590064272782044E2L,
108  -1.524043275549860505277434040464085593165E2L,
109   7.236063513651544224319663428634139768808E1L,
110  -1.494198912340228235853027849917095580053E1L
111   /* 1.0E0 */
112 };
113 
114 /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
115    0 <= x <= 0.5
116    Peak relative error 5.7e-38  */
117 static const long double PN[] =
118 {
119   5.081801691915377692446852383385968225675E8L,
120   9.360895299872484512023336636427675327355E6L,
121   4.213701282274196030811629773097579432957E4L,
122   5.201006511142748908655720086041570288182E1L,
123   9.088368420359444263703202925095675982530E-3L,
124 };
125 static const long double PD[] =
126 {
127   3.049081015149226615468111430031590411682E9L,
128   1.069833887183886839966085436512368982758E8L,
129   8.259257717868875207333991924545445705394E5L,
130   1.872583833284143212651746812884298360922E3L,
131   /* 1.0E0 */
132 };
133 
134 static const long double
135   /* ln 2 */
136   lg2 = 6.9314718055994530941723212145817656807550E-1L,
137   lg2_h = 6.9314718055994528622676398299518041312695E-1L,
138   lg2_l = 2.3190468138462996154948554638754786504121E-17L,
139   ovt = 8.0085662595372944372e-0017L,
140   /* 2/(3*log(2)) */
141   cp = 9.6179669392597560490661645400126142495110E-1L,
142   cp_h = 9.6179669392597555432899980587535537779331E-1L,
143   cp_l = 5.0577616648125906047157785230014751039424E-17L;
144 
145 long double
146 powl(long double x, long double y)
147 {
148   long double z, ax, z_h, z_l, p_h, p_l;
149   long double yy1, t1, t2, r, s, t, u, v, w;
150   long double s2, s_h, s_l, t_h, t_l;
151   int32_t i, j, k, yisint, n;
152   u_int32_t ix, iy;
153   int32_t hx, hy;
154   ieee_quad_shape_type o, p, q;
155 
156   p.value = x;
157   hx = p.parts32.mswhi;
158   ix = hx & 0x7fffffff;
159 
160   q.value = y;
161   hy = q.parts32.mswhi;
162   iy = hy & 0x7fffffff;
163 
164 
165   /* y==zero: x**0 = 1 */
166   if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
167     return one;
168 
169   /* 1.0**y = 1; -1.0**+-Inf = 1 */
170   if (x == one)
171     return one;
172   if (x == -1.0L && iy == 0x7fff0000
173       && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
174     return one;
175 
176   /* +-NaN return x+y */
177   if ((ix > 0x7fff0000)
178       || ((ix == 0x7fff0000)
179 	  && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
180       || (iy > 0x7fff0000)
181       || ((iy == 0x7fff0000)
182 	  && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
183     return nan_mix(x, y);
184 
185   /* determine if y is an odd int when x < 0
186    * yisint = 0       ... y is not an integer
187    * yisint = 1       ... y is an odd int
188    * yisint = 2       ... y is an even int
189    */
190   yisint = 0;
191   if (hx < 0)
192     {
193       if (iy >= 0x40700000)	/* 2^113 */
194 	yisint = 2;		/* even integer y */
195       else if (iy >= 0x3fff0000)	/* 1.0 */
196 	{
197 	  if (floorl (y) == y)
198 	    {
199 	      z = 0.5 * y;
200 	      if (floorl (z) == z)
201 		yisint = 2;
202 	      else
203 		yisint = 1;
204 	    }
205 	}
206     }
207 
208   /* special value of y */
209   if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
210     {
211       if (iy == 0x7fff0000)	/* y is +-inf */
212 	{
213 	  if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
214 	    p.parts32.lswlo) == 0)
215 	    return y - y;	/* +-1**inf is NaN */
216 	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */
217 	    return (hy >= 0) ? y : zero;
218 	  else			/* (|x|<1)**-,+inf = inf,0 */
219 	    return (hy < 0) ? -y : zero;
220 	}
221       if (iy == 0x3fff0000)
222 	{			/* y is  +-1 */
223 	  if (hy < 0)
224 	    return one / x;
225 	  else
226 	    return x;
227 	}
228       if (hy == 0x40000000)
229 	return x * x;		/* y is  2 */
230       if (hy == 0x3ffe0000)
231 	{			/* y is  0.5 */
232 	  if (hx >= 0)		/* x >= +0 */
233 	    return sqrtl (x);
234 	}
235     }
236 
237   ax = fabsl (x);
238   /* special value of x */
239   if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
240     {
241       if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
242 	{
243 	  z = ax;		/*x is +-0,+-inf,+-1 */
244 	  if (hy < 0)
245 	    z = one / z;	/* z = (1/|x|) */
246 	  if (hx < 0)
247 	    {
248 	      if (((ix - 0x3fff0000) | yisint) == 0)
249 		{
250 		  z = (z - z) / (z - z);	/* (-1)**non-int is NaN */
251 		}
252 	      else if (yisint == 1)
253 		z = -z;		/* (x<0)**odd = -(|x|**odd) */
254 	    }
255 	  return z;
256 	}
257     }
258 
259   /* (x<0)**(non-int) is NaN */
260   if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
261     return (x - x) / (x - x);
262 
263   /* |y| is huge.
264      2^-16495 = 1/2 of smallest representable value.
265      If (1 - 1/131072)^y underflows, y > 1.4986e9 */
266   if (iy > 0x401d654b)
267     {
268       /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
269       if (iy > 0x407d654b)
270 	{
271 	  if (ix <= 0x3ffeffff)
272 	    return (hy < 0) ? huge * huge : tiny * tiny;
273 	  if (ix >= 0x3fff0000)
274 	    return (hy > 0) ? huge * huge : tiny * tiny;
275 	}
276       /* over/underflow if x is not close to one */
277       if (ix < 0x3ffeffff)
278 	return (hy < 0) ? huge * huge : tiny * tiny;
279       if (ix > 0x3fff0000)
280 	return (hy > 0) ? huge * huge : tiny * tiny;
281     }
282 
283   n = 0;
284   /* take care subnormal number */
285   if (ix < 0x00010000)
286     {
287       ax *= two113;
288       n -= 113;
289       o.value = ax;
290       ix = o.parts32.mswhi;
291     }
292   n += ((ix) >> 16) - 0x3fff;
293   j = ix & 0x0000ffff;
294   /* determine interval */
295   ix = j | 0x3fff0000;		/* normalize ix */
296   if (j <= 0x3988)
297     k = 0;			/* |x|<sqrt(3/2) */
298   else if (j < 0xbb67)
299     k = 1;			/* |x|<sqrt(3)   */
300   else
301     {
302       k = 0;
303       n += 1;
304       ix -= 0x00010000;
305     }
306 
307   o.value = ax;
308   o.parts32.mswhi = ix;
309   ax = o.value;
310 
311   /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
312   u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
313   v = one / (ax + bp[k]);
314   s = u * v;
315   s_h = s;
316 
317   o.value = s_h;
318   o.parts32.lswlo = 0;
319   o.parts32.lswhi &= 0xf8000000;
320   s_h = o.value;
321   /* t_h=ax+bp[k] High */
322   t_h = ax + bp[k];
323   o.value = t_h;
324   o.parts32.lswlo = 0;
325   o.parts32.lswhi &= 0xf8000000;
326   t_h = o.value;
327   t_l = ax - (t_h - bp[k]);
328   s_l = v * ((u - s_h * t_h) - s_h * t_l);
329   /* compute log(ax) */
330   s2 = s * s;
331   u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
332   v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
333   r = s2 * s2 * u / v;
334   r += s_l * (s_h + s);
335   s2 = s_h * s_h;
336   t_h = 3.0 + s2 + r;
337   o.value = t_h;
338   o.parts32.lswlo = 0;
339   o.parts32.lswhi &= 0xf8000000;
340   t_h = o.value;
341   t_l = r - ((t_h - 3.0) - s2);
342   /* u+v = s*(1+...) */
343   u = s_h * t_h;
344   v = s_l * t_h + t_l * s;
345   /* 2/(3log2)*(s+...) */
346   p_h = u + v;
347   o.value = p_h;
348   o.parts32.lswlo = 0;
349   o.parts32.lswhi &= 0xf8000000;
350   p_h = o.value;
351   p_l = v - (p_h - u);
352   z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
353   z_l = cp_l * p_h + p_l * cp + dp_l[k];
354   /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
355   t = (long double) n;
356   t1 = (((z_h + z_l) + dp_h[k]) + t);
357   o.value = t1;
358   o.parts32.lswlo = 0;
359   o.parts32.lswhi &= 0xf8000000;
360   t1 = o.value;
361   t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
362 
363   /* s (sign of result -ve**odd) = -1 else = 1 */
364   s = one;
365   if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
366     s = -one;			/* (-ve)**(odd int) */
367 
368   /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
369   yy1 = y;
370   o.value = yy1;
371   o.parts32.lswlo = 0;
372   o.parts32.lswhi &= 0xf8000000;
373   yy1 = o.value;
374   p_l = (y - yy1) * t1 + y * t2;
375   p_h = yy1 * t1;
376   z = p_l + p_h;
377   o.value = z;
378   j = o.parts32.mswhi;
379   if (j >= 0x400d0000) /* z >= 16384 */
380     {
381       /* if z > 16384 */
382       if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
383 	o.parts32.lswlo) != 0)
384 	return s * huge * huge;	/* overflow */
385       else
386 	{
387 	  if (p_l + ovt > z - p_h)
388 	    return s * huge * huge;	/* overflow */
389 	}
390     }
391   else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */
392     {
393       /* z < -16495 */
394       if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
395 	o.parts32.lswlo)
396 	  != 0)
397 	return s * tiny * tiny;	/* underflow */
398       else
399 	{
400 	  if (p_l <= z - p_h)
401 	    return s * tiny * tiny;	/* underflow */
402 	}
403     }
404   /* compute 2**(p_h+p_l) */
405   i = j & 0x7fffffff;
406   k = (i >> 16) - 0x3fff;
407   n = 0;
408   if (i > 0x3ffe0000)
409     {				/* if |z| > 0.5, set n = [z+0.5] */
410       n = floorl (z + 0.5L);
411       t = n;
412       p_h -= t;
413     }
414   t = p_l + p_h;
415   o.value = t;
416   o.parts32.lswlo = 0;
417   o.parts32.lswhi &= 0xf8000000;
418   t = o.value;
419   u = t * lg2_h;
420   v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
421   z = u + v;
422   w = v - (z - u);
423   /*  exp(z) */
424   t = z * z;
425   u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
426   v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
427   t1 = z - t * u / v;
428   r = (z * t1) / (t1 - two) - (w + z * w);
429   z = one - (r - z);
430   o.value = z;
431   j = o.parts32.mswhi;
432   j += (n << 16);
433   if ((j >> 16) <= 0)
434     z = scalbnl (z, n);	/* subnormal output */
435   else
436     {
437       o.parts32.mswhi = j;
438       z = o.value;
439     }
440   return s * z;
441 }
442