xref: /freebsd/lib/msun/bsdsrc/b_log.c (revision afe61c15161c324a7af299a9b8457aba5afc92db)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #ifndef lint
35 static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
36 #endif /* not lint */
37 
38 #include <math.h>
39 #include <errno.h>
40 
41 #include "mathimpl.h"
42 
43 /* Table-driven natural logarithm.
44  *
45  * This code was derived, with minor modifications, from:
46  *	Peter Tang, "Table-Driven Implementation of the
47  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
48  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
49  *
50  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
51  * where F = j/128 for j an integer in [0, 128].
52  *
53  * log(2^m) = log2_hi*m + log2_tail*m
54  * since m is an integer, the dominant term is exact.
55  * m has at most 10 digits (for subnormal numbers),
56  * and log2_hi has 11 trailing zero bits.
57  *
58  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
59  * logF_hi[] + 512 is exact.
60  *
61  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
62  * the leading term is calculated to extra precision in two
63  * parts, the larger of which adds exactly to the dominant
64  * m and F terms.
65  * There are two cases:
66  *	1. when m, j are non-zero (m | j), use absolute
67  *	   precision for the leading term.
68  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
69  *	   In this case, use a relative precision of 24 bits.
70  * (This is done differently in the original paper)
71  *
72  * Special cases:
73  *	0	return signalling -Inf
74  *	neg	return signalling NaN
75  *	+Inf	return +Inf
76 */
77 
78 #if defined(vax) || defined(tahoe)
79 #define _IEEE		0
80 #define TRUNC(x)	x = (double) (float) (x)
81 #else
82 #define _IEEE		1
83 #define endian		(((*(int *) &one)) ? 1 : 0)
84 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
85 #define infnan(x)	0.0
86 #endif
87 
88 #define N 128
89 
90 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
91  * Used for generation of extend precision logarithms.
92  * The constant 35184372088832 is 2^45, so the divide is exact.
93  * It ensures correct reading of logF_head, even for inaccurate
94  * decimal-to-binary conversion routines.  (Everybody gets the
95  * right answer for integers less than 2^53.)
96  * Values for log(F) were generated using error < 10^-57 absolute
97  * with the bc -l package.
98 */
99 static double	A1 = 	  .08333333333333178827;
100 static double	A2 = 	  .01250000000377174923;
101 static double	A3 =	 .002232139987919447809;
102 static double	A4 =	.0004348877777076145742;
103 
104 static double logF_head[N+1] = {
105 	0.,
106 	.007782140442060381246,
107 	.015504186535963526694,
108 	.023167059281547608406,
109 	.030771658666765233647,
110 	.038318864302141264488,
111 	.045809536031242714670,
112 	.053244514518837604555,
113 	.060624621816486978786,
114 	.067950661908525944454,
115 	.075223421237524235039,
116 	.082443669210988446138,
117 	.089612158689760690322,
118 	.096729626458454731618,
119 	.103796793681567578460,
120 	.110814366340264314203,
121 	.117783035656430001836,
122 	.124703478501032805070,
123 	.131576357788617315236,
124 	.138402322859292326029,
125 	.145182009844575077295,
126 	.151916042025732167530,
127 	.158605030176659056451,
128 	.165249572895390883786,
129 	.171850256926518341060,
130 	.178407657472689606947,
131 	.184922338493834104156,
132 	.191394852999565046047,
133 	.197825743329758552135,
134 	.204215541428766300668,
135 	.210564769107350002741,
136 	.216873938300523150246,
137 	.223143551314024080056,
138 	.229374101064877322642,
139 	.235566071312860003672,
140 	.241719936886966024758,
141 	.247836163904594286577,
142 	.253915209980732470285,
143 	.259957524436686071567,
144 	.265963548496984003577,
145 	.271933715484010463114,
146 	.277868451003087102435,
147 	.283768173130738432519,
148 	.289633292582948342896,
149 	.295464212893421063199,
150 	.301261330578199704177,
151 	.307025035294827830512,
152 	.312755710004239517729,
153 	.318453731118097493890,
154 	.324119468654316733591,
155 	.329753286372579168528,
156 	.335355541920762334484,
157 	.340926586970454081892,
158 	.346466767346100823488,
159 	.351976423156884266063,
160 	.357455888922231679316,
161 	.362905493689140712376,
162 	.368325561158599157352,
163 	.373716409793814818840,
164 	.379078352934811846353,
165 	.384411698910298582632,
166 	.389716751140440464951,
167 	.394993808240542421117,
168 	.400243164127459749579,
169 	.405465108107819105498,
170 	.410659924985338875558,
171 	.415827895143593195825,
172 	.420969294644237379543,
173 	.426084395310681429691,
174 	.431173464818130014464,
175 	.436236766774527495726,
176 	.441274560805140936281,
177 	.446287102628048160113,
178 	.451274644139630254358,
179 	.456237433481874177232,
180 	.461175715122408291790,
181 	.466089729924533457960,
182 	.470979715219073113985,
183 	.475845904869856894947,
184 	.480688529345570714212,
185 	.485507815781602403149,
186 	.490303988045525329653,
187 	.495077266798034543171,
188 	.499827869556611403822,
189 	.504556010751912253908,
190 	.509261901790523552335,
191 	.513945751101346104405,
192 	.518607764208354637958,
193 	.523248143765158602036,
194 	.527867089620485785417,
195 	.532464798869114019908,
196 	.537041465897345915436,
197 	.541597282432121573947,
198 	.546132437597407260909,
199 	.550647117952394182793,
200 	.555141507540611200965,
201 	.559615787935399566777,
202 	.564070138285387656651,
203 	.568504735352689749561,
204 	.572919753562018740922,
205 	.577315365035246941260,
206 	.581691739635061821900,
207 	.586049045003164792433,
208 	.590387446602107957005,
209 	.594707107746216934174,
210 	.599008189645246602594,
211 	.603290851438941899687,
212 	.607555250224322662688,
213 	.611801541106615331955,
214 	.616029877215623855590,
215 	.620240409751204424537,
216 	.624433288012369303032,
217 	.628608659422752680256,
218 	.632766669570628437213,
219 	.636907462236194987781,
220 	.641031179420679109171,
221 	.645137961373620782978,
222 	.649227946625615004450,
223 	.653301272011958644725,
224 	.657358072709030238911,
225 	.661398482245203922502,
226 	.665422632544505177065,
227 	.669430653942981734871,
228 	.673422675212350441142,
229 	.677398823590920073911,
230 	.681359224807238206267,
231 	.685304003098281100392,
232 	.689233281238557538017,
233 	.693147180560117703862
234 };
235 
236 static double logF_tail[N+1] = {
237 	0.,
238 	-.00000000000000543229938420049,
239 	 .00000000000000172745674997061,
240 	-.00000000000001323017818229233,
241 	-.00000000000001154527628289872,
242 	-.00000000000000466529469958300,
243 	 .00000000000005148849572685810,
244 	-.00000000000002532168943117445,
245 	-.00000000000005213620639136504,
246 	-.00000000000001819506003016881,
247 	 .00000000000006329065958724544,
248 	 .00000000000008614512936087814,
249 	-.00000000000007355770219435028,
250 	 .00000000000009638067658552277,
251 	 .00000000000007598636597194141,
252 	 .00000000000002579999128306990,
253 	-.00000000000004654729747598444,
254 	-.00000000000007556920687451336,
255 	 .00000000000010195735223708472,
256 	-.00000000000017319034406422306,
257 	-.00000000000007718001336828098,
258 	 .00000000000010980754099855238,
259 	-.00000000000002047235780046195,
260 	-.00000000000008372091099235912,
261 	 .00000000000014088127937111135,
262 	 .00000000000012869017157588257,
263 	 .00000000000017788850778198106,
264 	 .00000000000006440856150696891,
265 	 .00000000000016132822667240822,
266 	-.00000000000007540916511956188,
267 	-.00000000000000036507188831790,
268 	 .00000000000009120937249914984,
269 	 .00000000000018567570959796010,
270 	-.00000000000003149265065191483,
271 	-.00000000000009309459495196889,
272 	 .00000000000017914338601329117,
273 	-.00000000000001302979717330866,
274 	 .00000000000023097385217586939,
275 	 .00000000000023999540484211737,
276 	 .00000000000015393776174455408,
277 	-.00000000000036870428315837678,
278 	 .00000000000036920375082080089,
279 	-.00000000000009383417223663699,
280 	 .00000000000009433398189512690,
281 	 .00000000000041481318704258568,
282 	-.00000000000003792316480209314,
283 	 .00000000000008403156304792424,
284 	-.00000000000034262934348285429,
285 	 .00000000000043712191957429145,
286 	-.00000000000010475750058776541,
287 	-.00000000000011118671389559323,
288 	 .00000000000037549577257259853,
289 	 .00000000000013912841212197565,
290 	 .00000000000010775743037572640,
291 	 .00000000000029391859187648000,
292 	-.00000000000042790509060060774,
293 	 .00000000000022774076114039555,
294 	 .00000000000010849569622967912,
295 	-.00000000000023073801945705758,
296 	 .00000000000015761203773969435,
297 	 .00000000000003345710269544082,
298 	-.00000000000041525158063436123,
299 	 .00000000000032655698896907146,
300 	-.00000000000044704265010452446,
301 	 .00000000000034527647952039772,
302 	-.00000000000007048962392109746,
303 	 .00000000000011776978751369214,
304 	-.00000000000010774341461609578,
305 	 .00000000000021863343293215910,
306 	 .00000000000024132639491333131,
307 	 .00000000000039057462209830700,
308 	-.00000000000026570679203560751,
309 	 .00000000000037135141919592021,
310 	-.00000000000017166921336082431,
311 	-.00000000000028658285157914353,
312 	-.00000000000023812542263446809,
313 	 .00000000000006576659768580062,
314 	-.00000000000028210143846181267,
315 	 .00000000000010701931762114254,
316 	 .00000000000018119346366441110,
317 	 .00000000000009840465278232627,
318 	-.00000000000033149150282752542,
319 	-.00000000000018302857356041668,
320 	-.00000000000016207400156744949,
321 	 .00000000000048303314949553201,
322 	-.00000000000071560553172382115,
323 	 .00000000000088821239518571855,
324 	-.00000000000030900580513238244,
325 	-.00000000000061076551972851496,
326 	 .00000000000035659969663347830,
327 	 .00000000000035782396591276383,
328 	-.00000000000046226087001544578,
329 	 .00000000000062279762917225156,
330 	 .00000000000072838947272065741,
331 	 .00000000000026809646615211673,
332 	-.00000000000010960825046059278,
333 	 .00000000000002311949383800537,
334 	-.00000000000058469058005299247,
335 	-.00000000000002103748251144494,
336 	-.00000000000023323182945587408,
337 	-.00000000000042333694288141916,
338 	-.00000000000043933937969737844,
339 	 .00000000000041341647073835565,
340 	 .00000000000006841763641591466,
341 	 .00000000000047585534004430641,
342 	 .00000000000083679678674757695,
343 	-.00000000000085763734646658640,
344 	 .00000000000021913281229340092,
345 	-.00000000000062242842536431148,
346 	-.00000000000010983594325438430,
347 	 .00000000000065310431377633651,
348 	-.00000000000047580199021710769,
349 	-.00000000000037854251265457040,
350 	 .00000000000040939233218678664,
351 	 .00000000000087424383914858291,
352 	 .00000000000025218188456842882,
353 	-.00000000000003608131360422557,
354 	-.00000000000050518555924280902,
355 	 .00000000000078699403323355317,
356 	-.00000000000067020876961949060,
357 	 .00000000000016108575753932458,
358 	 .00000000000058527188436251509,
359 	-.00000000000035246757297904791,
360 	-.00000000000018372084495629058,
361 	 .00000000000088606689813494916,
362 	 .00000000000066486268071468700,
363 	 .00000000000063831615170646519,
364 	 .00000000000025144230728376072,
365 	-.00000000000017239444525614834
366 };
367 
368 double
369 #ifdef _ANSI_SOURCE
370 log(double x)
371 #else
372 log(x) double x;
373 #endif
374 {
375 	int m, j;
376 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
377 	volatile double u1;
378 
379 	/* Catch special cases */
380 	if (x <= 0)
381 		if (_IEEE && x == zero)	/* log(0) = -Inf */
382 			return (-one/zero);
383 		else if (_IEEE)		/* log(neg) = NaN */
384 			return (zero/zero);
385 		else if (x == zero)	/* NOT REACHED IF _IEEE */
386 			return (infnan(-ERANGE));
387 		else
388 			return (infnan(EDOM));
389 	else if (!finite(x))
390 		if (_IEEE)		/* x = NaN, Inf */
391 			return (x+x);
392 		else
393 			return (infnan(ERANGE));
394 
395 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
396 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
397 
398 	m = logb(x);
399 	g = ldexp(x, -m);
400 	if (_IEEE && m == -1022) {
401 		j = logb(g), m += j;
402 		g = ldexp(g, -j);
403 	}
404 	j = N*(g-1) + .5;
405 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
406 	f = g - F;
407 
408 	/* Approximate expansion for log(1+f/F) ~= u + q */
409 	g = 1/(2*F+f);
410 	u = 2*f*g;
411 	v = u*u;
412 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
413 
414     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
415      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
416      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
417     */
418 	if (m | j)
419 		u1 = u + 513, u1 -= 513;
420 
421     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
422      * 		u1 = u to 24 bits.
423     */
424 	else
425 		u1 = u, TRUNC(u1);
426 	u2 = (2.0*(f - F*u1) - u1*f) * g;
427 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
428 
429 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
430 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
431 	/* (exact) + (tiny)						*/
432 
433 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
434 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
435 	u2 += logF_tail[N]*m;
436 	return (u1 + u2);
437 }
438 
439 /*
440  * Extra precision variant, returning struct {double a, b;};
441  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
442  */
443 struct Double
444 #ifdef _ANSI_SOURCE
445 __log__D(double x)
446 #else
447 __log__D(x) double x;
448 #endif
449 {
450 	int m, j;
451 	double F, f, g, q, u, v, u2, one = 1.0;
452 	volatile double u1;
453 	struct Double r;
454 
455 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
456 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
457 
458 	m = logb(x);
459 	g = ldexp(x, -m);
460 	if (_IEEE && m == -1022) {
461 		j = logb(g), m += j;
462 		g = ldexp(g, -j);
463 	}
464 	j = N*(g-1) + .5;
465 	F = (1.0/N) * j + 1;
466 	f = g - F;
467 
468 	g = 1/(2*F+f);
469 	u = 2*f*g;
470 	v = u*u;
471 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
472 	if (m | j)
473 		u1 = u + 513, u1 -= 513;
474 	else
475 		u1 = u, TRUNC(u1);
476 	u2 = (2.0*(f - F*u1) - u1*f) * g;
477 
478 	u1 += m*logF_head[N] + logF_head[j];
479 
480 	u2 +=  logF_tail[j]; u2 += q;
481 	u2 += logF_tail[N]*m;
482 	r.a = u1 + u2;			/* Only difference is here */
483 	TRUNC(r.a);
484 	r.b = (u1 - r.a) + u2;
485 	return (r);
486 }
487