xref: /freebsd/lib/msun/bsdsrc/b_log.c (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /* @(#)log.c	8.2 (Berkeley) 11/30/93 */
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <math.h>
37 
38 #include "mathimpl.h"
39 
40 /* Table-driven natural logarithm.
41  *
42  * This code was derived, with minor modifications, from:
43  *	Peter Tang, "Table-Driven Implementation of the
44  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
45  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
46  *
47  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
48  * where F = j/128 for j an integer in [0, 128].
49  *
50  * log(2^m) = log2_hi*m + log2_tail*m
51  * since m is an integer, the dominant term is exact.
52  * m has at most 10 digits (for subnormal numbers),
53  * and log2_hi has 11 trailing zero bits.
54  *
55  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
56  * logF_hi[] + 512 is exact.
57  *
58  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
59  * the leading term is calculated to extra precision in two
60  * parts, the larger of which adds exactly to the dominant
61  * m and F terms.
62  * There are two cases:
63  *	1. when m, j are non-zero (m | j), use absolute
64  *	   precision for the leading term.
65  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
66  *	   In this case, use a relative precision of 24 bits.
67  * (This is done differently in the original paper)
68  *
69  * Special cases:
70  *	0	return signalling -Inf
71  *	neg	return signalling NaN
72  *	+Inf	return +Inf
73 */
74 
75 #define N 128
76 
77 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
78  * Used for generation of extend precision logarithms.
79  * The constant 35184372088832 is 2^45, so the divide is exact.
80  * It ensures correct reading of logF_head, even for inaccurate
81  * decimal-to-binary conversion routines.  (Everybody gets the
82  * right answer for integers less than 2^53.)
83  * Values for log(F) were generated using error < 10^-57 absolute
84  * with the bc -l package.
85 */
86 static double	A1 = 	  .08333333333333178827;
87 static double	A2 = 	  .01250000000377174923;
88 static double	A3 =	 .002232139987919447809;
89 static double	A4 =	.0004348877777076145742;
90 
91 static double logF_head[N+1] = {
92 	0.,
93 	.007782140442060381246,
94 	.015504186535963526694,
95 	.023167059281547608406,
96 	.030771658666765233647,
97 	.038318864302141264488,
98 	.045809536031242714670,
99 	.053244514518837604555,
100 	.060624621816486978786,
101 	.067950661908525944454,
102 	.075223421237524235039,
103 	.082443669210988446138,
104 	.089612158689760690322,
105 	.096729626458454731618,
106 	.103796793681567578460,
107 	.110814366340264314203,
108 	.117783035656430001836,
109 	.124703478501032805070,
110 	.131576357788617315236,
111 	.138402322859292326029,
112 	.145182009844575077295,
113 	.151916042025732167530,
114 	.158605030176659056451,
115 	.165249572895390883786,
116 	.171850256926518341060,
117 	.178407657472689606947,
118 	.184922338493834104156,
119 	.191394852999565046047,
120 	.197825743329758552135,
121 	.204215541428766300668,
122 	.210564769107350002741,
123 	.216873938300523150246,
124 	.223143551314024080056,
125 	.229374101064877322642,
126 	.235566071312860003672,
127 	.241719936886966024758,
128 	.247836163904594286577,
129 	.253915209980732470285,
130 	.259957524436686071567,
131 	.265963548496984003577,
132 	.271933715484010463114,
133 	.277868451003087102435,
134 	.283768173130738432519,
135 	.289633292582948342896,
136 	.295464212893421063199,
137 	.301261330578199704177,
138 	.307025035294827830512,
139 	.312755710004239517729,
140 	.318453731118097493890,
141 	.324119468654316733591,
142 	.329753286372579168528,
143 	.335355541920762334484,
144 	.340926586970454081892,
145 	.346466767346100823488,
146 	.351976423156884266063,
147 	.357455888922231679316,
148 	.362905493689140712376,
149 	.368325561158599157352,
150 	.373716409793814818840,
151 	.379078352934811846353,
152 	.384411698910298582632,
153 	.389716751140440464951,
154 	.394993808240542421117,
155 	.400243164127459749579,
156 	.405465108107819105498,
157 	.410659924985338875558,
158 	.415827895143593195825,
159 	.420969294644237379543,
160 	.426084395310681429691,
161 	.431173464818130014464,
162 	.436236766774527495726,
163 	.441274560805140936281,
164 	.446287102628048160113,
165 	.451274644139630254358,
166 	.456237433481874177232,
167 	.461175715122408291790,
168 	.466089729924533457960,
169 	.470979715219073113985,
170 	.475845904869856894947,
171 	.480688529345570714212,
172 	.485507815781602403149,
173 	.490303988045525329653,
174 	.495077266798034543171,
175 	.499827869556611403822,
176 	.504556010751912253908,
177 	.509261901790523552335,
178 	.513945751101346104405,
179 	.518607764208354637958,
180 	.523248143765158602036,
181 	.527867089620485785417,
182 	.532464798869114019908,
183 	.537041465897345915436,
184 	.541597282432121573947,
185 	.546132437597407260909,
186 	.550647117952394182793,
187 	.555141507540611200965,
188 	.559615787935399566777,
189 	.564070138285387656651,
190 	.568504735352689749561,
191 	.572919753562018740922,
192 	.577315365035246941260,
193 	.581691739635061821900,
194 	.586049045003164792433,
195 	.590387446602107957005,
196 	.594707107746216934174,
197 	.599008189645246602594,
198 	.603290851438941899687,
199 	.607555250224322662688,
200 	.611801541106615331955,
201 	.616029877215623855590,
202 	.620240409751204424537,
203 	.624433288012369303032,
204 	.628608659422752680256,
205 	.632766669570628437213,
206 	.636907462236194987781,
207 	.641031179420679109171,
208 	.645137961373620782978,
209 	.649227946625615004450,
210 	.653301272011958644725,
211 	.657358072709030238911,
212 	.661398482245203922502,
213 	.665422632544505177065,
214 	.669430653942981734871,
215 	.673422675212350441142,
216 	.677398823590920073911,
217 	.681359224807238206267,
218 	.685304003098281100392,
219 	.689233281238557538017,
220 	.693147180560117703862
221 };
222 
223 static double logF_tail[N+1] = {
224 	0.,
225 	-.00000000000000543229938420049,
226 	 .00000000000000172745674997061,
227 	-.00000000000001323017818229233,
228 	-.00000000000001154527628289872,
229 	-.00000000000000466529469958300,
230 	 .00000000000005148849572685810,
231 	-.00000000000002532168943117445,
232 	-.00000000000005213620639136504,
233 	-.00000000000001819506003016881,
234 	 .00000000000006329065958724544,
235 	 .00000000000008614512936087814,
236 	-.00000000000007355770219435028,
237 	 .00000000000009638067658552277,
238 	 .00000000000007598636597194141,
239 	 .00000000000002579999128306990,
240 	-.00000000000004654729747598444,
241 	-.00000000000007556920687451336,
242 	 .00000000000010195735223708472,
243 	-.00000000000017319034406422306,
244 	-.00000000000007718001336828098,
245 	 .00000000000010980754099855238,
246 	-.00000000000002047235780046195,
247 	-.00000000000008372091099235912,
248 	 .00000000000014088127937111135,
249 	 .00000000000012869017157588257,
250 	 .00000000000017788850778198106,
251 	 .00000000000006440856150696891,
252 	 .00000000000016132822667240822,
253 	-.00000000000007540916511956188,
254 	-.00000000000000036507188831790,
255 	 .00000000000009120937249914984,
256 	 .00000000000018567570959796010,
257 	-.00000000000003149265065191483,
258 	-.00000000000009309459495196889,
259 	 .00000000000017914338601329117,
260 	-.00000000000001302979717330866,
261 	 .00000000000023097385217586939,
262 	 .00000000000023999540484211737,
263 	 .00000000000015393776174455408,
264 	-.00000000000036870428315837678,
265 	 .00000000000036920375082080089,
266 	-.00000000000009383417223663699,
267 	 .00000000000009433398189512690,
268 	 .00000000000041481318704258568,
269 	-.00000000000003792316480209314,
270 	 .00000000000008403156304792424,
271 	-.00000000000034262934348285429,
272 	 .00000000000043712191957429145,
273 	-.00000000000010475750058776541,
274 	-.00000000000011118671389559323,
275 	 .00000000000037549577257259853,
276 	 .00000000000013912841212197565,
277 	 .00000000000010775743037572640,
278 	 .00000000000029391859187648000,
279 	-.00000000000042790509060060774,
280 	 .00000000000022774076114039555,
281 	 .00000000000010849569622967912,
282 	-.00000000000023073801945705758,
283 	 .00000000000015761203773969435,
284 	 .00000000000003345710269544082,
285 	-.00000000000041525158063436123,
286 	 .00000000000032655698896907146,
287 	-.00000000000044704265010452446,
288 	 .00000000000034527647952039772,
289 	-.00000000000007048962392109746,
290 	 .00000000000011776978751369214,
291 	-.00000000000010774341461609578,
292 	 .00000000000021863343293215910,
293 	 .00000000000024132639491333131,
294 	 .00000000000039057462209830700,
295 	-.00000000000026570679203560751,
296 	 .00000000000037135141919592021,
297 	-.00000000000017166921336082431,
298 	-.00000000000028658285157914353,
299 	-.00000000000023812542263446809,
300 	 .00000000000006576659768580062,
301 	-.00000000000028210143846181267,
302 	 .00000000000010701931762114254,
303 	 .00000000000018119346366441110,
304 	 .00000000000009840465278232627,
305 	-.00000000000033149150282752542,
306 	-.00000000000018302857356041668,
307 	-.00000000000016207400156744949,
308 	 .00000000000048303314949553201,
309 	-.00000000000071560553172382115,
310 	 .00000000000088821239518571855,
311 	-.00000000000030900580513238244,
312 	-.00000000000061076551972851496,
313 	 .00000000000035659969663347830,
314 	 .00000000000035782396591276383,
315 	-.00000000000046226087001544578,
316 	 .00000000000062279762917225156,
317 	 .00000000000072838947272065741,
318 	 .00000000000026809646615211673,
319 	-.00000000000010960825046059278,
320 	 .00000000000002311949383800537,
321 	-.00000000000058469058005299247,
322 	-.00000000000002103748251144494,
323 	-.00000000000023323182945587408,
324 	-.00000000000042333694288141916,
325 	-.00000000000043933937969737844,
326 	 .00000000000041341647073835565,
327 	 .00000000000006841763641591466,
328 	 .00000000000047585534004430641,
329 	 .00000000000083679678674757695,
330 	-.00000000000085763734646658640,
331 	 .00000000000021913281229340092,
332 	-.00000000000062242842536431148,
333 	-.00000000000010983594325438430,
334 	 .00000000000065310431377633651,
335 	-.00000000000047580199021710769,
336 	-.00000000000037854251265457040,
337 	 .00000000000040939233218678664,
338 	 .00000000000087424383914858291,
339 	 .00000000000025218188456842882,
340 	-.00000000000003608131360422557,
341 	-.00000000000050518555924280902,
342 	 .00000000000078699403323355317,
343 	-.00000000000067020876961949060,
344 	 .00000000000016108575753932458,
345 	 .00000000000058527188436251509,
346 	-.00000000000035246757297904791,
347 	-.00000000000018372084495629058,
348 	 .00000000000088606689813494916,
349 	 .00000000000066486268071468700,
350 	 .00000000000063831615170646519,
351 	 .00000000000025144230728376072,
352 	-.00000000000017239444525614834
353 };
354 
355 #if 0
356 double
357 #ifdef _ANSI_SOURCE
358 log(double x)
359 #else
360 log(x) double x;
361 #endif
362 {
363 	int m, j;
364 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
365 	volatile double u1;
366 
367 	/* Catch special cases */
368 	if (x <= 0)
369 		if (x == zero)	/* log(0) = -Inf */
370 			return (-one/zero);
371 		else		/* log(neg) = NaN */
372 			return (zero/zero);
373 	else if (!finite(x))
374 		return (x+x);		/* x = NaN, Inf */
375 
376 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
377 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
378 
379 	m = logb(x);
380 	g = ldexp(x, -m);
381 	if (m == -1022) {
382 		j = logb(g), m += j;
383 		g = ldexp(g, -j);
384 	}
385 	j = N*(g-1) + .5;
386 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
387 	f = g - F;
388 
389 	/* Approximate expansion for log(1+f/F) ~= u + q */
390 	g = 1/(2*F+f);
391 	u = 2*f*g;
392 	v = u*u;
393 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
394 
395     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
396      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
397      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
398     */
399 	if (m | j)
400 		u1 = u + 513, u1 -= 513;
401 
402     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
403      * 		u1 = u to 24 bits.
404     */
405 	else
406 		u1 = u, TRUNC(u1);
407 	u2 = (2.0*(f - F*u1) - u1*f) * g;
408 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
409 
410 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
411 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
412 	/* (exact) + (tiny)						*/
413 
414 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
415 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
416 	u2 += logF_tail[N]*m;
417 	return (u1 + u2);
418 }
419 #endif
420 
421 /*
422  * Extra precision variant, returning struct {double a, b;};
423  * log(x) = a+b to 63 bits, with a rounded to 26 bits.
424  */
425 struct Double
426 #ifdef _ANSI_SOURCE
427 __log__D(double x)
428 #else
429 __log__D(x) double x;
430 #endif
431 {
432 	int m, j;
433 	double F, f, g, q, u, v, u2;
434 	volatile double u1;
435 	struct Double r;
436 
437 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
438 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
439 
440 	m = logb(x);
441 	g = ldexp(x, -m);
442 	if (m == -1022) {
443 		j = logb(g), m += j;
444 		g = ldexp(g, -j);
445 	}
446 	j = N*(g-1) + .5;
447 	F = (1.0/N) * j + 1;
448 	f = g - F;
449 
450 	g = 1/(2*F+f);
451 	u = 2*f*g;
452 	v = u*u;
453 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
454 	if (m | j)
455 		u1 = u + 513, u1 -= 513;
456 	else
457 		u1 = u, TRUNC(u1);
458 	u2 = (2.0*(f - F*u1) - u1*f) * g;
459 
460 	u1 += m*logF_head[N] + logF_head[j];
461 
462 	u2 +=  logF_tail[j]; u2 += q;
463 	u2 += logF_tail[N]*m;
464 	r.a = u1 + u2;			/* Only difference is here */
465 	TRUNC(r.a);
466 	r.b = (u1 - r.a) + u2;
467 	return (r);
468 }
469