xref: /freebsd/lib/msun/bsdsrc/b_log.c (revision 406a584d7e80c2617dc035ede0d922215a12141c)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /* @(#)log.c	8.2 (Berkeley) 11/30/93 */
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <math.h>
41 
42 #include "mathimpl.h"
43 
44 /* Table-driven natural logarithm.
45  *
46  * This code was derived, with minor modifications, from:
47  *	Peter Tang, "Table-Driven Implementation of the
48  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
49  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
50  *
51  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
52  * where F = j/128 for j an integer in [0, 128].
53  *
54  * log(2^m) = log2_hi*m + log2_tail*m
55  * since m is an integer, the dominant term is exact.
56  * m has at most 10 digits (for subnormal numbers),
57  * and log2_hi has 11 trailing zero bits.
58  *
59  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
60  * logF_hi[] + 512 is exact.
61  *
62  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
63  * the leading term is calculated to extra precision in two
64  * parts, the larger of which adds exactly to the dominant
65  * m and F terms.
66  * There are two cases:
67  *	1. when m, j are non-zero (m | j), use absolute
68  *	   precision for the leading term.
69  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
70  *	   In this case, use a relative precision of 24 bits.
71  * (This is done differently in the original paper)
72  *
73  * Special cases:
74  *	0	return signalling -Inf
75  *	neg	return signalling NaN
76  *	+Inf	return +Inf
77 */
78 
79 #define N 128
80 
81 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
82  * Used for generation of extend precision logarithms.
83  * The constant 35184372088832 is 2^45, so the divide is exact.
84  * It ensures correct reading of logF_head, even for inaccurate
85  * decimal-to-binary conversion routines.  (Everybody gets the
86  * right answer for integers less than 2^53.)
87  * Values for log(F) were generated using error < 10^-57 absolute
88  * with the bc -l package.
89 */
90 static double	A1 = 	  .08333333333333178827;
91 static double	A2 = 	  .01250000000377174923;
92 static double	A3 =	 .002232139987919447809;
93 static double	A4 =	.0004348877777076145742;
94 
95 static double logF_head[N+1] = {
96 	0.,
97 	.007782140442060381246,
98 	.015504186535963526694,
99 	.023167059281547608406,
100 	.030771658666765233647,
101 	.038318864302141264488,
102 	.045809536031242714670,
103 	.053244514518837604555,
104 	.060624621816486978786,
105 	.067950661908525944454,
106 	.075223421237524235039,
107 	.082443669210988446138,
108 	.089612158689760690322,
109 	.096729626458454731618,
110 	.103796793681567578460,
111 	.110814366340264314203,
112 	.117783035656430001836,
113 	.124703478501032805070,
114 	.131576357788617315236,
115 	.138402322859292326029,
116 	.145182009844575077295,
117 	.151916042025732167530,
118 	.158605030176659056451,
119 	.165249572895390883786,
120 	.171850256926518341060,
121 	.178407657472689606947,
122 	.184922338493834104156,
123 	.191394852999565046047,
124 	.197825743329758552135,
125 	.204215541428766300668,
126 	.210564769107350002741,
127 	.216873938300523150246,
128 	.223143551314024080056,
129 	.229374101064877322642,
130 	.235566071312860003672,
131 	.241719936886966024758,
132 	.247836163904594286577,
133 	.253915209980732470285,
134 	.259957524436686071567,
135 	.265963548496984003577,
136 	.271933715484010463114,
137 	.277868451003087102435,
138 	.283768173130738432519,
139 	.289633292582948342896,
140 	.295464212893421063199,
141 	.301261330578199704177,
142 	.307025035294827830512,
143 	.312755710004239517729,
144 	.318453731118097493890,
145 	.324119468654316733591,
146 	.329753286372579168528,
147 	.335355541920762334484,
148 	.340926586970454081892,
149 	.346466767346100823488,
150 	.351976423156884266063,
151 	.357455888922231679316,
152 	.362905493689140712376,
153 	.368325561158599157352,
154 	.373716409793814818840,
155 	.379078352934811846353,
156 	.384411698910298582632,
157 	.389716751140440464951,
158 	.394993808240542421117,
159 	.400243164127459749579,
160 	.405465108107819105498,
161 	.410659924985338875558,
162 	.415827895143593195825,
163 	.420969294644237379543,
164 	.426084395310681429691,
165 	.431173464818130014464,
166 	.436236766774527495726,
167 	.441274560805140936281,
168 	.446287102628048160113,
169 	.451274644139630254358,
170 	.456237433481874177232,
171 	.461175715122408291790,
172 	.466089729924533457960,
173 	.470979715219073113985,
174 	.475845904869856894947,
175 	.480688529345570714212,
176 	.485507815781602403149,
177 	.490303988045525329653,
178 	.495077266798034543171,
179 	.499827869556611403822,
180 	.504556010751912253908,
181 	.509261901790523552335,
182 	.513945751101346104405,
183 	.518607764208354637958,
184 	.523248143765158602036,
185 	.527867089620485785417,
186 	.532464798869114019908,
187 	.537041465897345915436,
188 	.541597282432121573947,
189 	.546132437597407260909,
190 	.550647117952394182793,
191 	.555141507540611200965,
192 	.559615787935399566777,
193 	.564070138285387656651,
194 	.568504735352689749561,
195 	.572919753562018740922,
196 	.577315365035246941260,
197 	.581691739635061821900,
198 	.586049045003164792433,
199 	.590387446602107957005,
200 	.594707107746216934174,
201 	.599008189645246602594,
202 	.603290851438941899687,
203 	.607555250224322662688,
204 	.611801541106615331955,
205 	.616029877215623855590,
206 	.620240409751204424537,
207 	.624433288012369303032,
208 	.628608659422752680256,
209 	.632766669570628437213,
210 	.636907462236194987781,
211 	.641031179420679109171,
212 	.645137961373620782978,
213 	.649227946625615004450,
214 	.653301272011958644725,
215 	.657358072709030238911,
216 	.661398482245203922502,
217 	.665422632544505177065,
218 	.669430653942981734871,
219 	.673422675212350441142,
220 	.677398823590920073911,
221 	.681359224807238206267,
222 	.685304003098281100392,
223 	.689233281238557538017,
224 	.693147180560117703862
225 };
226 
227 static double logF_tail[N+1] = {
228 	0.,
229 	-.00000000000000543229938420049,
230 	 .00000000000000172745674997061,
231 	-.00000000000001323017818229233,
232 	-.00000000000001154527628289872,
233 	-.00000000000000466529469958300,
234 	 .00000000000005148849572685810,
235 	-.00000000000002532168943117445,
236 	-.00000000000005213620639136504,
237 	-.00000000000001819506003016881,
238 	 .00000000000006329065958724544,
239 	 .00000000000008614512936087814,
240 	-.00000000000007355770219435028,
241 	 .00000000000009638067658552277,
242 	 .00000000000007598636597194141,
243 	 .00000000000002579999128306990,
244 	-.00000000000004654729747598444,
245 	-.00000000000007556920687451336,
246 	 .00000000000010195735223708472,
247 	-.00000000000017319034406422306,
248 	-.00000000000007718001336828098,
249 	 .00000000000010980754099855238,
250 	-.00000000000002047235780046195,
251 	-.00000000000008372091099235912,
252 	 .00000000000014088127937111135,
253 	 .00000000000012869017157588257,
254 	 .00000000000017788850778198106,
255 	 .00000000000006440856150696891,
256 	 .00000000000016132822667240822,
257 	-.00000000000007540916511956188,
258 	-.00000000000000036507188831790,
259 	 .00000000000009120937249914984,
260 	 .00000000000018567570959796010,
261 	-.00000000000003149265065191483,
262 	-.00000000000009309459495196889,
263 	 .00000000000017914338601329117,
264 	-.00000000000001302979717330866,
265 	 .00000000000023097385217586939,
266 	 .00000000000023999540484211737,
267 	 .00000000000015393776174455408,
268 	-.00000000000036870428315837678,
269 	 .00000000000036920375082080089,
270 	-.00000000000009383417223663699,
271 	 .00000000000009433398189512690,
272 	 .00000000000041481318704258568,
273 	-.00000000000003792316480209314,
274 	 .00000000000008403156304792424,
275 	-.00000000000034262934348285429,
276 	 .00000000000043712191957429145,
277 	-.00000000000010475750058776541,
278 	-.00000000000011118671389559323,
279 	 .00000000000037549577257259853,
280 	 .00000000000013912841212197565,
281 	 .00000000000010775743037572640,
282 	 .00000000000029391859187648000,
283 	-.00000000000042790509060060774,
284 	 .00000000000022774076114039555,
285 	 .00000000000010849569622967912,
286 	-.00000000000023073801945705758,
287 	 .00000000000015761203773969435,
288 	 .00000000000003345710269544082,
289 	-.00000000000041525158063436123,
290 	 .00000000000032655698896907146,
291 	-.00000000000044704265010452446,
292 	 .00000000000034527647952039772,
293 	-.00000000000007048962392109746,
294 	 .00000000000011776978751369214,
295 	-.00000000000010774341461609578,
296 	 .00000000000021863343293215910,
297 	 .00000000000024132639491333131,
298 	 .00000000000039057462209830700,
299 	-.00000000000026570679203560751,
300 	 .00000000000037135141919592021,
301 	-.00000000000017166921336082431,
302 	-.00000000000028658285157914353,
303 	-.00000000000023812542263446809,
304 	 .00000000000006576659768580062,
305 	-.00000000000028210143846181267,
306 	 .00000000000010701931762114254,
307 	 .00000000000018119346366441110,
308 	 .00000000000009840465278232627,
309 	-.00000000000033149150282752542,
310 	-.00000000000018302857356041668,
311 	-.00000000000016207400156744949,
312 	 .00000000000048303314949553201,
313 	-.00000000000071560553172382115,
314 	 .00000000000088821239518571855,
315 	-.00000000000030900580513238244,
316 	-.00000000000061076551972851496,
317 	 .00000000000035659969663347830,
318 	 .00000000000035782396591276383,
319 	-.00000000000046226087001544578,
320 	 .00000000000062279762917225156,
321 	 .00000000000072838947272065741,
322 	 .00000000000026809646615211673,
323 	-.00000000000010960825046059278,
324 	 .00000000000002311949383800537,
325 	-.00000000000058469058005299247,
326 	-.00000000000002103748251144494,
327 	-.00000000000023323182945587408,
328 	-.00000000000042333694288141916,
329 	-.00000000000043933937969737844,
330 	 .00000000000041341647073835565,
331 	 .00000000000006841763641591466,
332 	 .00000000000047585534004430641,
333 	 .00000000000083679678674757695,
334 	-.00000000000085763734646658640,
335 	 .00000000000021913281229340092,
336 	-.00000000000062242842536431148,
337 	-.00000000000010983594325438430,
338 	 .00000000000065310431377633651,
339 	-.00000000000047580199021710769,
340 	-.00000000000037854251265457040,
341 	 .00000000000040939233218678664,
342 	 .00000000000087424383914858291,
343 	 .00000000000025218188456842882,
344 	-.00000000000003608131360422557,
345 	-.00000000000050518555924280902,
346 	 .00000000000078699403323355317,
347 	-.00000000000067020876961949060,
348 	 .00000000000016108575753932458,
349 	 .00000000000058527188436251509,
350 	-.00000000000035246757297904791,
351 	-.00000000000018372084495629058,
352 	 .00000000000088606689813494916,
353 	 .00000000000066486268071468700,
354 	 .00000000000063831615170646519,
355 	 .00000000000025144230728376072,
356 	-.00000000000017239444525614834
357 };
358 
359 #if 0
360 double
361 #ifdef _ANSI_SOURCE
362 log(double x)
363 #else
364 log(x) double x;
365 #endif
366 {
367 	int m, j;
368 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
369 	volatile double u1;
370 
371 	/* Catch special cases */
372 	if (x <= 0)
373 		if (x == zero)	/* log(0) = -Inf */
374 			return (-one/zero);
375 		else		/* log(neg) = NaN */
376 			return (zero/zero);
377 	else if (!finite(x))
378 		return (x+x);		/* x = NaN, Inf */
379 
380 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
381 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
382 
383 	m = logb(x);
384 	g = ldexp(x, -m);
385 	if (m == -1022) {
386 		j = logb(g), m += j;
387 		g = ldexp(g, -j);
388 	}
389 	j = N*(g-1) + .5;
390 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
391 	f = g - F;
392 
393 	/* Approximate expansion for log(1+f/F) ~= u + q */
394 	g = 1/(2*F+f);
395 	u = 2*f*g;
396 	v = u*u;
397 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
398 
399     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
400      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
401      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
402     */
403 	if (m | j)
404 		u1 = u + 513, u1 -= 513;
405 
406     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
407      * 		u1 = u to 24 bits.
408     */
409 	else
410 		u1 = u, TRUNC(u1);
411 	u2 = (2.0*(f - F*u1) - u1*f) * g;
412 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
413 
414 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
415 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
416 	/* (exact) + (tiny)						*/
417 
418 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
419 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
420 	u2 += logF_tail[N]*m;
421 	return (u1 + u2);
422 }
423 #endif
424 
425 /*
426  * Extra precision variant, returning struct {double a, b;};
427  * log(x) = a+b to 63 bits, with a rounded to 26 bits.
428  */
429 struct Double
430 #ifdef _ANSI_SOURCE
431 __log__D(double x)
432 #else
433 __log__D(x) double x;
434 #endif
435 {
436 	int m, j;
437 	double F, f, g, q, u, v, u2;
438 	volatile double u1;
439 	struct Double r;
440 
441 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
442 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
443 
444 	m = logb(x);
445 	g = ldexp(x, -m);
446 	if (m == -1022) {
447 		j = logb(g), m += j;
448 		g = ldexp(g, -j);
449 	}
450 	j = N*(g-1) + .5;
451 	F = (1.0/N) * j + 1;
452 	f = g - F;
453 
454 	g = 1/(2*F+f);
455 	u = 2*f*g;
456 	v = u*u;
457 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
458 	if (m | j)
459 		u1 = u + 513, u1 -= 513;
460 	else
461 		u1 = u, TRUNC(u1);
462 	u2 = (2.0*(f - F*u1) - u1*f) * g;
463 
464 	u1 += m*logF_head[N] + logF_head[j];
465 
466 	u2 +=  logF_tail[j]; u2 += q;
467 	u2 += logF_tail[N]*m;
468 	r.a = u1 + u2;			/* Only difference is here */
469 	TRUNC(r.a);
470 	r.b = (u1 - r.a) + u2;
471 	return (r);
472 }
473