xref: /freebsd/lib/msun/bsdsrc/b_log.c (revision 1669d8afc64812c8d2d1d147ae1fd42ff441e1b1)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #ifndef lint
35 static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
36 #endif /* not lint */
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <math.h>
41 #include <errno.h>
42 
43 #include "mathimpl.h"
44 
45 /* Table-driven natural logarithm.
46  *
47  * This code was derived, with minor modifications, from:
48  *	Peter Tang, "Table-Driven Implementation of the
49  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
50  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
51  *
52  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
53  * where F = j/128 for j an integer in [0, 128].
54  *
55  * log(2^m) = log2_hi*m + log2_tail*m
56  * since m is an integer, the dominant term is exact.
57  * m has at most 10 digits (for subnormal numbers),
58  * and log2_hi has 11 trailing zero bits.
59  *
60  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
61  * logF_hi[] + 512 is exact.
62  *
63  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
64  * the leading term is calculated to extra precision in two
65  * parts, the larger of which adds exactly to the dominant
66  * m and F terms.
67  * There are two cases:
68  *	1. when m, j are non-zero (m | j), use absolute
69  *	   precision for the leading term.
70  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
71  *	   In this case, use a relative precision of 24 bits.
72  * (This is done differently in the original paper)
73  *
74  * Special cases:
75  *	0	return signalling -Inf
76  *	neg	return signalling NaN
77  *	+Inf	return +Inf
78 */
79 
80 #define N 128
81 
82 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
83  * Used for generation of extend precision logarithms.
84  * The constant 35184372088832 is 2^45, so the divide is exact.
85  * It ensures correct reading of logF_head, even for inaccurate
86  * decimal-to-binary conversion routines.  (Everybody gets the
87  * right answer for integers less than 2^53.)
88  * Values for log(F) were generated using error < 10^-57 absolute
89  * with the bc -l package.
90 */
91 static double	A1 = 	  .08333333333333178827;
92 static double	A2 = 	  .01250000000377174923;
93 static double	A3 =	 .002232139987919447809;
94 static double	A4 =	.0004348877777076145742;
95 
96 static double logF_head[N+1] = {
97 	0.,
98 	.007782140442060381246,
99 	.015504186535963526694,
100 	.023167059281547608406,
101 	.030771658666765233647,
102 	.038318864302141264488,
103 	.045809536031242714670,
104 	.053244514518837604555,
105 	.060624621816486978786,
106 	.067950661908525944454,
107 	.075223421237524235039,
108 	.082443669210988446138,
109 	.089612158689760690322,
110 	.096729626458454731618,
111 	.103796793681567578460,
112 	.110814366340264314203,
113 	.117783035656430001836,
114 	.124703478501032805070,
115 	.131576357788617315236,
116 	.138402322859292326029,
117 	.145182009844575077295,
118 	.151916042025732167530,
119 	.158605030176659056451,
120 	.165249572895390883786,
121 	.171850256926518341060,
122 	.178407657472689606947,
123 	.184922338493834104156,
124 	.191394852999565046047,
125 	.197825743329758552135,
126 	.204215541428766300668,
127 	.210564769107350002741,
128 	.216873938300523150246,
129 	.223143551314024080056,
130 	.229374101064877322642,
131 	.235566071312860003672,
132 	.241719936886966024758,
133 	.247836163904594286577,
134 	.253915209980732470285,
135 	.259957524436686071567,
136 	.265963548496984003577,
137 	.271933715484010463114,
138 	.277868451003087102435,
139 	.283768173130738432519,
140 	.289633292582948342896,
141 	.295464212893421063199,
142 	.301261330578199704177,
143 	.307025035294827830512,
144 	.312755710004239517729,
145 	.318453731118097493890,
146 	.324119468654316733591,
147 	.329753286372579168528,
148 	.335355541920762334484,
149 	.340926586970454081892,
150 	.346466767346100823488,
151 	.351976423156884266063,
152 	.357455888922231679316,
153 	.362905493689140712376,
154 	.368325561158599157352,
155 	.373716409793814818840,
156 	.379078352934811846353,
157 	.384411698910298582632,
158 	.389716751140440464951,
159 	.394993808240542421117,
160 	.400243164127459749579,
161 	.405465108107819105498,
162 	.410659924985338875558,
163 	.415827895143593195825,
164 	.420969294644237379543,
165 	.426084395310681429691,
166 	.431173464818130014464,
167 	.436236766774527495726,
168 	.441274560805140936281,
169 	.446287102628048160113,
170 	.451274644139630254358,
171 	.456237433481874177232,
172 	.461175715122408291790,
173 	.466089729924533457960,
174 	.470979715219073113985,
175 	.475845904869856894947,
176 	.480688529345570714212,
177 	.485507815781602403149,
178 	.490303988045525329653,
179 	.495077266798034543171,
180 	.499827869556611403822,
181 	.504556010751912253908,
182 	.509261901790523552335,
183 	.513945751101346104405,
184 	.518607764208354637958,
185 	.523248143765158602036,
186 	.527867089620485785417,
187 	.532464798869114019908,
188 	.537041465897345915436,
189 	.541597282432121573947,
190 	.546132437597407260909,
191 	.550647117952394182793,
192 	.555141507540611200965,
193 	.559615787935399566777,
194 	.564070138285387656651,
195 	.568504735352689749561,
196 	.572919753562018740922,
197 	.577315365035246941260,
198 	.581691739635061821900,
199 	.586049045003164792433,
200 	.590387446602107957005,
201 	.594707107746216934174,
202 	.599008189645246602594,
203 	.603290851438941899687,
204 	.607555250224322662688,
205 	.611801541106615331955,
206 	.616029877215623855590,
207 	.620240409751204424537,
208 	.624433288012369303032,
209 	.628608659422752680256,
210 	.632766669570628437213,
211 	.636907462236194987781,
212 	.641031179420679109171,
213 	.645137961373620782978,
214 	.649227946625615004450,
215 	.653301272011958644725,
216 	.657358072709030238911,
217 	.661398482245203922502,
218 	.665422632544505177065,
219 	.669430653942981734871,
220 	.673422675212350441142,
221 	.677398823590920073911,
222 	.681359224807238206267,
223 	.685304003098281100392,
224 	.689233281238557538017,
225 	.693147180560117703862
226 };
227 
228 static double logF_tail[N+1] = {
229 	0.,
230 	-.00000000000000543229938420049,
231 	 .00000000000000172745674997061,
232 	-.00000000000001323017818229233,
233 	-.00000000000001154527628289872,
234 	-.00000000000000466529469958300,
235 	 .00000000000005148849572685810,
236 	-.00000000000002532168943117445,
237 	-.00000000000005213620639136504,
238 	-.00000000000001819506003016881,
239 	 .00000000000006329065958724544,
240 	 .00000000000008614512936087814,
241 	-.00000000000007355770219435028,
242 	 .00000000000009638067658552277,
243 	 .00000000000007598636597194141,
244 	 .00000000000002579999128306990,
245 	-.00000000000004654729747598444,
246 	-.00000000000007556920687451336,
247 	 .00000000000010195735223708472,
248 	-.00000000000017319034406422306,
249 	-.00000000000007718001336828098,
250 	 .00000000000010980754099855238,
251 	-.00000000000002047235780046195,
252 	-.00000000000008372091099235912,
253 	 .00000000000014088127937111135,
254 	 .00000000000012869017157588257,
255 	 .00000000000017788850778198106,
256 	 .00000000000006440856150696891,
257 	 .00000000000016132822667240822,
258 	-.00000000000007540916511956188,
259 	-.00000000000000036507188831790,
260 	 .00000000000009120937249914984,
261 	 .00000000000018567570959796010,
262 	-.00000000000003149265065191483,
263 	-.00000000000009309459495196889,
264 	 .00000000000017914338601329117,
265 	-.00000000000001302979717330866,
266 	 .00000000000023097385217586939,
267 	 .00000000000023999540484211737,
268 	 .00000000000015393776174455408,
269 	-.00000000000036870428315837678,
270 	 .00000000000036920375082080089,
271 	-.00000000000009383417223663699,
272 	 .00000000000009433398189512690,
273 	 .00000000000041481318704258568,
274 	-.00000000000003792316480209314,
275 	 .00000000000008403156304792424,
276 	-.00000000000034262934348285429,
277 	 .00000000000043712191957429145,
278 	-.00000000000010475750058776541,
279 	-.00000000000011118671389559323,
280 	 .00000000000037549577257259853,
281 	 .00000000000013912841212197565,
282 	 .00000000000010775743037572640,
283 	 .00000000000029391859187648000,
284 	-.00000000000042790509060060774,
285 	 .00000000000022774076114039555,
286 	 .00000000000010849569622967912,
287 	-.00000000000023073801945705758,
288 	 .00000000000015761203773969435,
289 	 .00000000000003345710269544082,
290 	-.00000000000041525158063436123,
291 	 .00000000000032655698896907146,
292 	-.00000000000044704265010452446,
293 	 .00000000000034527647952039772,
294 	-.00000000000007048962392109746,
295 	 .00000000000011776978751369214,
296 	-.00000000000010774341461609578,
297 	 .00000000000021863343293215910,
298 	 .00000000000024132639491333131,
299 	 .00000000000039057462209830700,
300 	-.00000000000026570679203560751,
301 	 .00000000000037135141919592021,
302 	-.00000000000017166921336082431,
303 	-.00000000000028658285157914353,
304 	-.00000000000023812542263446809,
305 	 .00000000000006576659768580062,
306 	-.00000000000028210143846181267,
307 	 .00000000000010701931762114254,
308 	 .00000000000018119346366441110,
309 	 .00000000000009840465278232627,
310 	-.00000000000033149150282752542,
311 	-.00000000000018302857356041668,
312 	-.00000000000016207400156744949,
313 	 .00000000000048303314949553201,
314 	-.00000000000071560553172382115,
315 	 .00000000000088821239518571855,
316 	-.00000000000030900580513238244,
317 	-.00000000000061076551972851496,
318 	 .00000000000035659969663347830,
319 	 .00000000000035782396591276383,
320 	-.00000000000046226087001544578,
321 	 .00000000000062279762917225156,
322 	 .00000000000072838947272065741,
323 	 .00000000000026809646615211673,
324 	-.00000000000010960825046059278,
325 	 .00000000000002311949383800537,
326 	-.00000000000058469058005299247,
327 	-.00000000000002103748251144494,
328 	-.00000000000023323182945587408,
329 	-.00000000000042333694288141916,
330 	-.00000000000043933937969737844,
331 	 .00000000000041341647073835565,
332 	 .00000000000006841763641591466,
333 	 .00000000000047585534004430641,
334 	 .00000000000083679678674757695,
335 	-.00000000000085763734646658640,
336 	 .00000000000021913281229340092,
337 	-.00000000000062242842536431148,
338 	-.00000000000010983594325438430,
339 	 .00000000000065310431377633651,
340 	-.00000000000047580199021710769,
341 	-.00000000000037854251265457040,
342 	 .00000000000040939233218678664,
343 	 .00000000000087424383914858291,
344 	 .00000000000025218188456842882,
345 	-.00000000000003608131360422557,
346 	-.00000000000050518555924280902,
347 	 .00000000000078699403323355317,
348 	-.00000000000067020876961949060,
349 	 .00000000000016108575753932458,
350 	 .00000000000058527188436251509,
351 	-.00000000000035246757297904791,
352 	-.00000000000018372084495629058,
353 	 .00000000000088606689813494916,
354 	 .00000000000066486268071468700,
355 	 .00000000000063831615170646519,
356 	 .00000000000025144230728376072,
357 	-.00000000000017239444525614834
358 };
359 
360 #if 0
361 double
362 #ifdef _ANSI_SOURCE
363 log(double x)
364 #else
365 log(x) double x;
366 #endif
367 {
368 	int m, j;
369 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
370 	volatile double u1;
371 
372 	/* Catch special cases */
373 	if (x <= 0)
374 		if (x == zero)	/* log(0) = -Inf */
375 			return (-one/zero);
376 		else		/* log(neg) = NaN */
377 			return (zero/zero);
378 	else if (!finite(x))
379 		return (x+x);		/* x = NaN, Inf */
380 
381 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
382 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
383 
384 	m = logb(x);
385 	g = ldexp(x, -m);
386 	if (m == -1022) {
387 		j = logb(g), m += j;
388 		g = ldexp(g, -j);
389 	}
390 	j = N*(g-1) + .5;
391 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
392 	f = g - F;
393 
394 	/* Approximate expansion for log(1+f/F) ~= u + q */
395 	g = 1/(2*F+f);
396 	u = 2*f*g;
397 	v = u*u;
398 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
399 
400     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
401      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
402      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
403     */
404 	if (m | j)
405 		u1 = u + 513, u1 -= 513;
406 
407     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
408      * 		u1 = u to 24 bits.
409     */
410 	else
411 		u1 = u, TRUNC(u1);
412 	u2 = (2.0*(f - F*u1) - u1*f) * g;
413 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
414 
415 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
416 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
417 	/* (exact) + (tiny)						*/
418 
419 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
420 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
421 	u2 += logF_tail[N]*m;
422 	return (u1 + u2);
423 }
424 #endif
425 
426 /*
427  * Extra precision variant, returning struct {double a, b;};
428  * log(x) = a+b to 63 bits, with a rounded to 26 bits.
429  */
430 struct Double
431 #ifdef _ANSI_SOURCE
432 __log__D(double x)
433 #else
434 __log__D(x) double x;
435 #endif
436 {
437 	int m, j;
438 	double F, f, g, q, u, v, u2;
439 	volatile double u1;
440 	struct Double r;
441 
442 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
443 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
444 
445 	m = logb(x);
446 	g = ldexp(x, -m);
447 	if (m == -1022) {
448 		j = logb(g), m += j;
449 		g = ldexp(g, -j);
450 	}
451 	j = N*(g-1) + .5;
452 	F = (1.0/N) * j + 1;
453 	f = g - F;
454 
455 	g = 1/(2*F+f);
456 	u = 2*f*g;
457 	v = u*u;
458 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
459 	if (m | j)
460 		u1 = u + 513, u1 -= 513;
461 	else
462 		u1 = u, TRUNC(u1);
463 	u2 = (2.0*(f - F*u1) - u1*f) * g;
464 
465 	u1 += m*logF_head[N] + logF_head[j];
466 
467 	u2 +=  logF_tail[j]; u2 += q;
468 	u2 += logF_tail[N]*m;
469 	r.a = u1 + u2;			/* Only difference is here */
470 	TRUNC(r.a);
471 	r.b = (u1 - r.a) + u2;
472 	return (r);
473 }
474