xref: /freebsd/lib/msun/bsdsrc/b_exp.c (revision d0b2dbfa0ecf2bbc9709efc5e20baf8e4b44bbbf)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1985, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 /* @(#)exp.c	8.1 (Berkeley) 6/4/93 */
33 #include <sys/cdefs.h>
34 /* EXP(X)
35  * RETURN THE EXPONENTIAL OF X
36  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
37  * CODED IN C BY K.C. NG, 1/19/85;
38  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
39  *
40  * Required system supported functions:
41  *	ldexp(x,n)
42  *	copysign(x,y)
43  *	isfinite(x)
44  *
45  * Method:
46  *	1. Argument Reduction: given the input x, find r and integer k such
47  *	   that
48  *	        x = k*ln2 + r,  |r| <= 0.5*ln2.
49  *	   r will be represented as r := z+c for better accuracy.
50  *
51  *	2. Compute exp(r) by
52  *
53  *		exp(r) = 1 + r + r*R1/(2-R1),
54  *	   where
55  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
56  *
57  *	3. exp(x) = 2^k * exp(r) .
58  *
59  * Special cases:
60  *	exp(INF) is INF, exp(NaN) is NaN;
61  *	exp(-INF)=  0;
62  *	for finite argument, only exp(0)=1 is exact.
63  *
64  * Accuracy:
65  *	exp(x) returns the exponential of x nearly rounded. In a test run
66  *	with 1,156,000 random arguments on a VAX, the maximum observed
67  *	error was 0.869 ulps (units in the last place).
68  */
69 static const double
70     p1 =  1.6666666666666660e-01, /* 0x3fc55555, 0x55555553 */
71     p2 = -2.7777777777564776e-03, /* 0xbf66c16c, 0x16c0ac3c */
72     p3 =  6.6137564717940088e-05, /* 0x3f11566a, 0xb5c2ba0d */
73     p4 = -1.6534060280704225e-06, /* 0xbebbbd53, 0x273e8fb7 */
74     p5 =  4.1437773411069054e-08; /* 0x3e663f2a, 0x09c94b6c */
75 
76 static const double
77     ln2hi = 0x1.62e42fee00000p-1,   /* High 32 bits round-down. */
78     ln2lo = 0x1.a39ef35793c76p-33;  /* Next 53 bits round-to-nearst. */
79 
80 static const double
81     lnhuge =  0x1.6602b15b7ecf2p9,  /* (DBL_MAX_EXP + 9) * log(2.) */
82     lntiny = -0x1.77af8ebeae354p9,  /* (DBL_MIN_EXP - 53 - 10) * log(2.) */
83     invln2 =  0x1.71547652b82fep0;  /* 1 / log(2.) */
84 
85 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
86 
87 static double
88 __exp__D(double x, double c)
89 {
90 	double hi, lo, z;
91 	int k;
92 
93 	if (x != x)	/* x is NaN. */
94 		return(x);
95 
96 	if (x <= lnhuge) {
97 		if (x >= lntiny) {
98 			/* argument reduction: x --> x - k*ln2 */
99 			z = invln2 * x;
100 			k = z + copysign(0.5, x);
101 
102 		    	/*
103 			 * Express (x + c) - k * ln2 as hi - lo.
104 			 * Let x = hi - lo rounded.
105 			 */
106 			hi = x - k * ln2hi;	/* Exact. */
107 			lo = k * ln2lo - c;
108 			x = hi - lo;
109 
110 			/* Return 2^k*[1+x+x*c/(2+c)]  */
111 			z = x * x;
112 			c = x - z * (p1 + z * (p2 + z * (p3 + z * (p4 +
113 			    z * p5))));
114 			c = (x * c) / (2 - c);
115 
116 			return (ldexp(1 + (hi - (lo - c)), k));
117 		} else {
118 			/* exp(-INF) is 0. exp(-big) underflows to 0.  */
119 			return (isfinite(x) ? ldexp(1., -5000) : 0);
120 		}
121 	} else
122 	/* exp(INF) is INF, exp(+big#) overflows to INF */
123 		return (isfinite(x) ? ldexp(1., 5000) : x);
124 }
125