xref: /freebsd/lib/msun/bsdsrc/b_exp.c (revision cddbc3b40812213ff00041f79174cac0be360a2a)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1985, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 /* @(#)exp.c	8.1 (Berkeley) 6/4/93 */
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 
41 /* EXP(X)
42  * RETURN THE EXPONENTIAL OF X
43  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
44  * CODED IN C BY K.C. NG, 1/19/85;
45  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
46  *
47  * Required system supported functions:
48  *	scalb(x,n)
49  *	copysign(x,y)
50  *	finite(x)
51  *
52  * Method:
53  *	1. Argument Reduction: given the input x, find r and integer k such
54  *	   that
55  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
56  *	   r will be represented as r := z+c for better accuracy.
57  *
58  *	2. Compute exp(r) by
59  *
60  *		exp(r) = 1 + r + r*R1/(2-R1),
61  *	   where
62  *		R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
63  *
64  *	3. exp(x) = 2^k * exp(r) .
65  *
66  * Special cases:
67  *	exp(INF) is INF, exp(NaN) is NaN;
68  *	exp(-INF)=  0;
69  *	for finite argument, only exp(0)=1 is exact.
70  *
71  * Accuracy:
72  *	exp(x) returns the exponential of x nearly rounded. In a test run
73  *	with 1,156,000 random arguments on a VAX, the maximum observed
74  *	error was 0.869 ulps (units in the last place).
75  */
76 
77 #include "mathimpl.h"
78 
79 static const double p1 = 0x1.555555555553ep-3;
80 static const double p2 = -0x1.6c16c16bebd93p-9;
81 static const double p3 = 0x1.1566aaf25de2cp-14;
82 static const double p4 = -0x1.bbd41c5d26bf1p-20;
83 static const double p5 = 0x1.6376972bea4d0p-25;
84 static const double ln2hi = 0x1.62e42fee00000p-1;
85 static const double ln2lo = 0x1.a39ef35793c76p-33;
86 static const double lnhuge = 0x1.6602b15b7ecf2p9;
87 static const double lntiny = -0x1.77af8ebeae354p9;
88 static const double invln2 = 0x1.71547652b82fep0;
89 
90 #if 0
91 double exp(x)
92 double x;
93 {
94 	double  z,hi,lo,c;
95 	int k;
96 
97 #if !defined(vax)&&!defined(tahoe)
98 	if(x!=x) return(x);	/* x is NaN */
99 #endif	/* !defined(vax)&&!defined(tahoe) */
100 	if( x <= lnhuge ) {
101 		if( x >= lntiny ) {
102 
103 		    /* argument reduction : x --> x - k*ln2 */
104 
105 			k=invln2*x+copysign(0.5,x);	/* k=NINT(x/ln2) */
106 
107 		    /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
108 
109 			hi=x-k*ln2hi;
110 			x=hi-(lo=k*ln2lo);
111 
112 		    /* return 2^k*[1+x+x*c/(2+c)]  */
113 			z=x*x;
114 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
115 			return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
116 
117 		}
118 		/* end of x > lntiny */
119 
120 		else
121 		     /* exp(-big#) underflows to zero */
122 		     if(finite(x))  return(scalb(1.0,-5000));
123 
124 		     /* exp(-INF) is zero */
125 		     else return(0.0);
126 	}
127 	/* end of x < lnhuge */
128 
129 	else
130 	/* exp(INF) is INF, exp(+big#) overflows to INF */
131 	    return( finite(x) ?  scalb(1.0,5000)  : x);
132 }
133 #endif
134 
135 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
136 
137 double __exp__D(x, c)
138 double x, c;
139 {
140 	double  z,hi,lo;
141 	int k;
142 
143 	if (x != x)	/* x is NaN */
144 		return(x);
145 	if ( x <= lnhuge ) {
146 		if ( x >= lntiny ) {
147 
148 		    /* argument reduction : x --> x - k*ln2 */
149 			z = invln2*x;
150 			k = z + copysign(.5, x);
151 
152 		    /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
153 
154 			hi=(x-k*ln2hi);			/* Exact. */
155 			x= hi - (lo = k*ln2lo-c);
156 		    /* return 2^k*[1+x+x*c/(2+c)]  */
157 			z=x*x;
158 			c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
159 			c = (x*c)/(2.0-c);
160 
161 			return  scalb(1.+(hi-(lo - c)), k);
162 		}
163 		/* end of x > lntiny */
164 
165 		else
166 		     /* exp(-big#) underflows to zero */
167 		     if(finite(x))  return(scalb(1.0,-5000));
168 
169 		     /* exp(-INF) is zero */
170 		     else return(0.0);
171 	}
172 	/* end of x < lnhuge */
173 
174 	else
175 	/* exp(INF) is INF, exp(+big#) overflows to INF */
176 	    return( finite(x) ?  scalb(1.0,5000)  : x);
177 }
178