xref: /freebsd/lib/libvmmapi/vmmapi.c (revision dacc43df34a7da82747af82be62cb645eb36f6ca)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/sysctl.h>
36 #include <sys/ioctl.h>
37 #include <sys/mman.h>
38 #include <sys/_iovec.h>
39 #include <sys/cpuset.h>
40 
41 #include <x86/segments.h>
42 #include <machine/specialreg.h>
43 
44 #include <errno.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <assert.h>
48 #include <string.h>
49 #include <fcntl.h>
50 #include <unistd.h>
51 
52 #include <libutil.h>
53 
54 #include <machine/vmm.h>
55 #include <machine/vmm_dev.h>
56 
57 #include "vmmapi.h"
58 
59 #define	MB	(1024 * 1024UL)
60 #define	GB	(1024 * 1024 * 1024UL)
61 
62 /*
63  * Size of the guard region before and after the virtual address space
64  * mapping the guest physical memory. This must be a multiple of the
65  * superpage size for performance reasons.
66  */
67 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
68 
69 #define	PROT_RW		(PROT_READ | PROT_WRITE)
70 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
71 
72 struct vmctx {
73 	int	fd;
74 	uint32_t lowmem_limit;
75 	int	memflags;
76 	size_t	lowmem;
77 	size_t	highmem;
78 	char	*baseaddr;
79 	char	*name;
80 };
81 
82 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
83 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
84 
85 static int
86 vm_device_open(const char *name)
87 {
88 	int fd, len;
89 	char *vmfile;
90 
91 	len = strlen("/dev/vmm/") + strlen(name) + 1;
92 	vmfile = malloc(len);
93 	assert(vmfile != NULL);
94 	snprintf(vmfile, len, "/dev/vmm/%s", name);
95 
96 	/* Open the device file */
97 	fd = open(vmfile, O_RDWR, 0);
98 
99 	free(vmfile);
100 	return (fd);
101 }
102 
103 int
104 vm_create(const char *name)
105 {
106 
107 	return (CREATE((char *)name));
108 }
109 
110 struct vmctx *
111 vm_open(const char *name)
112 {
113 	struct vmctx *vm;
114 
115 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
116 	assert(vm != NULL);
117 
118 	vm->fd = -1;
119 	vm->memflags = 0;
120 	vm->lowmem_limit = 3 * GB;
121 	vm->name = (char *)(vm + 1);
122 	strcpy(vm->name, name);
123 
124 	if ((vm->fd = vm_device_open(vm->name)) < 0)
125 		goto err;
126 
127 	return (vm);
128 err:
129 	vm_destroy(vm);
130 	return (NULL);
131 }
132 
133 void
134 vm_destroy(struct vmctx *vm)
135 {
136 	assert(vm != NULL);
137 
138 	if (vm->fd >= 0)
139 		close(vm->fd);
140 	DESTROY(vm->name);
141 
142 	free(vm);
143 }
144 
145 int
146 vm_parse_memsize(const char *optarg, size_t *ret_memsize)
147 {
148 	char *endptr;
149 	size_t optval;
150 	int error;
151 
152 	optval = strtoul(optarg, &endptr, 0);
153 	if (*optarg != '\0' && *endptr == '\0') {
154 		/*
155 		 * For the sake of backward compatibility if the memory size
156 		 * specified on the command line is less than a megabyte then
157 		 * it is interpreted as being in units of MB.
158 		 */
159 		if (optval < MB)
160 			optval *= MB;
161 		*ret_memsize = optval;
162 		error = 0;
163 	} else
164 		error = expand_number(optarg, ret_memsize);
165 
166 	return (error);
167 }
168 
169 uint32_t
170 vm_get_lowmem_limit(struct vmctx *ctx)
171 {
172 
173 	return (ctx->lowmem_limit);
174 }
175 
176 void
177 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
178 {
179 
180 	ctx->lowmem_limit = limit;
181 }
182 
183 void
184 vm_set_memflags(struct vmctx *ctx, int flags)
185 {
186 
187 	ctx->memflags = flags;
188 }
189 
190 int
191 vm_get_memflags(struct vmctx *ctx)
192 {
193 
194 	return (ctx->memflags);
195 }
196 
197 /*
198  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
199  */
200 int
201 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
202     size_t len, int prot)
203 {
204 	struct vm_memmap memmap;
205 	int error, flags;
206 
207 	memmap.gpa = gpa;
208 	memmap.segid = segid;
209 	memmap.segoff = off;
210 	memmap.len = len;
211 	memmap.prot = prot;
212 	memmap.flags = 0;
213 
214 	if (ctx->memflags & VM_MEM_F_WIRED)
215 		memmap.flags |= VM_MEMMAP_F_WIRED;
216 
217 	/*
218 	 * If this mapping already exists then don't create it again. This
219 	 * is the common case for SYSMEM mappings created by bhyveload(8).
220 	 */
221 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
222 	if (error == 0 && gpa == memmap.gpa) {
223 		if (segid != memmap.segid || off != memmap.segoff ||
224 		    prot != memmap.prot || flags != memmap.flags) {
225 			errno = EEXIST;
226 			return (-1);
227 		} else {
228 			return (0);
229 		}
230 	}
231 
232 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
233 	return (error);
234 }
235 
236 int
237 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
238     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
239 {
240 	struct vm_memmap memmap;
241 	int error;
242 
243 	bzero(&memmap, sizeof(struct vm_memmap));
244 	memmap.gpa = *gpa;
245 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
246 	if (error == 0) {
247 		*gpa = memmap.gpa;
248 		*segid = memmap.segid;
249 		*segoff = memmap.segoff;
250 		*len = memmap.len;
251 		*prot = memmap.prot;
252 		*flags = memmap.flags;
253 	}
254 	return (error);
255 }
256 
257 /*
258  * Return 0 if the segments are identical and non-zero otherwise.
259  *
260  * This is slightly complicated by the fact that only device memory segments
261  * are named.
262  */
263 static int
264 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
265 {
266 
267 	if (len == len2) {
268 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
269 			return (0);
270 	}
271 	return (-1);
272 }
273 
274 static int
275 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
276 {
277 	struct vm_memseg memseg;
278 	size_t n;
279 	int error;
280 
281 	/*
282 	 * If the memory segment has already been created then just return.
283 	 * This is the usual case for the SYSMEM segment created by userspace
284 	 * loaders like bhyveload(8).
285 	 */
286 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
287 	    sizeof(memseg.name));
288 	if (error)
289 		return (error);
290 
291 	if (memseg.len != 0) {
292 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
293 			errno = EINVAL;
294 			return (-1);
295 		} else {
296 			return (0);
297 		}
298 	}
299 
300 	bzero(&memseg, sizeof(struct vm_memseg));
301 	memseg.segid = segid;
302 	memseg.len = len;
303 	if (name != NULL) {
304 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
305 		if (n >= sizeof(memseg.name)) {
306 			errno = ENAMETOOLONG;
307 			return (-1);
308 		}
309 	}
310 
311 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
312 	return (error);
313 }
314 
315 int
316 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
317     size_t bufsize)
318 {
319 	struct vm_memseg memseg;
320 	size_t n;
321 	int error;
322 
323 	memseg.segid = segid;
324 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
325 	if (error == 0) {
326 		*lenp = memseg.len;
327 		n = strlcpy(namebuf, memseg.name, bufsize);
328 		if (n >= bufsize) {
329 			errno = ENAMETOOLONG;
330 			error = -1;
331 		}
332 	}
333 	return (error);
334 }
335 
336 static int
337 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
338 {
339 	char *ptr;
340 	int error, flags;
341 
342 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
343 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
344 	if (error)
345 		return (error);
346 
347 	flags = MAP_SHARED | MAP_FIXED;
348 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
349 		flags |= MAP_NOCORE;
350 
351 	/* mmap into the process address space on the host */
352 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
353 	if (ptr == MAP_FAILED)
354 		return (-1);
355 
356 	return (0);
357 }
358 
359 int
360 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
361 {
362 	size_t objsize, len;
363 	vm_paddr_t gpa;
364 	char *baseaddr, *ptr;
365 	int error;
366 
367 	assert(vms == VM_MMAP_ALL);
368 
369 	/*
370 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
371 	 * create another 'highmem' segment above 4GB for the remainder.
372 	 */
373 	if (memsize > ctx->lowmem_limit) {
374 		ctx->lowmem = ctx->lowmem_limit;
375 		ctx->highmem = memsize - ctx->lowmem_limit;
376 		objsize = 4*GB + ctx->highmem;
377 	} else {
378 		ctx->lowmem = memsize;
379 		ctx->highmem = 0;
380 		objsize = ctx->lowmem;
381 	}
382 
383 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
384 	if (error)
385 		return (error);
386 
387 	/*
388 	 * Stake out a contiguous region covering the guest physical memory
389 	 * and the adjoining guard regions.
390 	 */
391 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
392 	ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
393 	if (ptr == MAP_FAILED)
394 		return (-1);
395 
396 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
397 	if (ctx->highmem > 0) {
398 		gpa = 4*GB;
399 		len = ctx->highmem;
400 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
401 		if (error)
402 			return (error);
403 	}
404 
405 	if (ctx->lowmem > 0) {
406 		gpa = 0;
407 		len = ctx->lowmem;
408 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
409 		if (error)
410 			return (error);
411 	}
412 
413 	ctx->baseaddr = baseaddr;
414 
415 	return (0);
416 }
417 
418 /*
419  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
420  * the lowmem or highmem regions.
421  *
422  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
423  * The instruction emulation code depends on this behavior.
424  */
425 void *
426 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
427 {
428 
429 	if (ctx->lowmem > 0) {
430 		if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
431 		    gaddr + len <= ctx->lowmem)
432 			return (ctx->baseaddr + gaddr);
433 	}
434 
435 	if (ctx->highmem > 0) {
436                 if (gaddr >= 4*GB) {
437 			if (gaddr < 4*GB + ctx->highmem &&
438 			    len <= ctx->highmem &&
439 			    gaddr + len <= 4*GB + ctx->highmem)
440 				return (ctx->baseaddr + gaddr);
441 		}
442 	}
443 
444 	return (NULL);
445 }
446 
447 size_t
448 vm_get_lowmem_size(struct vmctx *ctx)
449 {
450 
451 	return (ctx->lowmem);
452 }
453 
454 size_t
455 vm_get_highmem_size(struct vmctx *ctx)
456 {
457 
458 	return (ctx->highmem);
459 }
460 
461 void *
462 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
463 {
464 	char pathname[MAXPATHLEN];
465 	size_t len2;
466 	char *base, *ptr;
467 	int fd, error, flags;
468 
469 	fd = -1;
470 	ptr = MAP_FAILED;
471 	if (name == NULL || strlen(name) == 0) {
472 		errno = EINVAL;
473 		goto done;
474 	}
475 
476 	error = vm_alloc_memseg(ctx, segid, len, name);
477 	if (error)
478 		goto done;
479 
480 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
481 	strlcat(pathname, ctx->name, sizeof(pathname));
482 	strlcat(pathname, ".", sizeof(pathname));
483 	strlcat(pathname, name, sizeof(pathname));
484 
485 	fd = open(pathname, O_RDWR);
486 	if (fd < 0)
487 		goto done;
488 
489 	/*
490 	 * Stake out a contiguous region covering the device memory and the
491 	 * adjoining guard regions.
492 	 */
493 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
494 	base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
495 	    0);
496 	if (base == MAP_FAILED)
497 		goto done;
498 
499 	flags = MAP_SHARED | MAP_FIXED;
500 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
501 		flags |= MAP_NOCORE;
502 
503 	/* mmap the devmem region in the host address space */
504 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
505 done:
506 	if (fd >= 0)
507 		close(fd);
508 	return (ptr);
509 }
510 
511 int
512 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
513 	    uint64_t base, uint32_t limit, uint32_t access)
514 {
515 	int error;
516 	struct vm_seg_desc vmsegdesc;
517 
518 	bzero(&vmsegdesc, sizeof(vmsegdesc));
519 	vmsegdesc.cpuid = vcpu;
520 	vmsegdesc.regnum = reg;
521 	vmsegdesc.desc.base = base;
522 	vmsegdesc.desc.limit = limit;
523 	vmsegdesc.desc.access = access;
524 
525 	error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
526 	return (error);
527 }
528 
529 int
530 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
531 	    uint64_t *base, uint32_t *limit, uint32_t *access)
532 {
533 	int error;
534 	struct vm_seg_desc vmsegdesc;
535 
536 	bzero(&vmsegdesc, sizeof(vmsegdesc));
537 	vmsegdesc.cpuid = vcpu;
538 	vmsegdesc.regnum = reg;
539 
540 	error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
541 	if (error == 0) {
542 		*base = vmsegdesc.desc.base;
543 		*limit = vmsegdesc.desc.limit;
544 		*access = vmsegdesc.desc.access;
545 	}
546 	return (error);
547 }
548 
549 int
550 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
551 {
552 	int error;
553 
554 	error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
555 	    &seg_desc->access);
556 	return (error);
557 }
558 
559 int
560 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
561 {
562 	int error;
563 	struct vm_register vmreg;
564 
565 	bzero(&vmreg, sizeof(vmreg));
566 	vmreg.cpuid = vcpu;
567 	vmreg.regnum = reg;
568 	vmreg.regval = val;
569 
570 	error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
571 	return (error);
572 }
573 
574 int
575 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
576 {
577 	int error;
578 	struct vm_register vmreg;
579 
580 	bzero(&vmreg, sizeof(vmreg));
581 	vmreg.cpuid = vcpu;
582 	vmreg.regnum = reg;
583 
584 	error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
585 	*ret_val = vmreg.regval;
586 	return (error);
587 }
588 
589 int
590 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
591     const int *regnums, uint64_t *regvals)
592 {
593 	int error;
594 	struct vm_register_set vmregset;
595 
596 	bzero(&vmregset, sizeof(vmregset));
597 	vmregset.cpuid = vcpu;
598 	vmregset.count = count;
599 	vmregset.regnums = regnums;
600 	vmregset.regvals = regvals;
601 
602 	error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset);
603 	return (error);
604 }
605 
606 int
607 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
608     const int *regnums, uint64_t *regvals)
609 {
610 	int error;
611 	struct vm_register_set vmregset;
612 
613 	bzero(&vmregset, sizeof(vmregset));
614 	vmregset.cpuid = vcpu;
615 	vmregset.count = count;
616 	vmregset.regnums = regnums;
617 	vmregset.regvals = regvals;
618 
619 	error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset);
620 	return (error);
621 }
622 
623 int
624 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit)
625 {
626 	int error;
627 	struct vm_run vmrun;
628 
629 	bzero(&vmrun, sizeof(vmrun));
630 	vmrun.cpuid = vcpu;
631 
632 	error = ioctl(ctx->fd, VM_RUN, &vmrun);
633 	bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit));
634 	return (error);
635 }
636 
637 int
638 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
639 {
640 	struct vm_suspend vmsuspend;
641 
642 	bzero(&vmsuspend, sizeof(vmsuspend));
643 	vmsuspend.how = how;
644 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
645 }
646 
647 int
648 vm_reinit(struct vmctx *ctx)
649 {
650 
651 	return (ioctl(ctx->fd, VM_REINIT, 0));
652 }
653 
654 int
655 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
656     uint32_t errcode, int restart_instruction)
657 {
658 	struct vm_exception exc;
659 
660 	exc.cpuid = vcpu;
661 	exc.vector = vector;
662 	exc.error_code = errcode;
663 	exc.error_code_valid = errcode_valid;
664 	exc.restart_instruction = restart_instruction;
665 
666 	return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
667 }
668 
669 int
670 vm_apicid2vcpu(struct vmctx *ctx, int apicid)
671 {
672 	/*
673 	 * The apic id associated with the 'vcpu' has the same numerical value
674 	 * as the 'vcpu' itself.
675 	 */
676 	return (apicid);
677 }
678 
679 int
680 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
681 {
682 	struct vm_lapic_irq vmirq;
683 
684 	bzero(&vmirq, sizeof(vmirq));
685 	vmirq.cpuid = vcpu;
686 	vmirq.vector = vector;
687 
688 	return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
689 }
690 
691 int
692 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
693 {
694 	struct vm_lapic_irq vmirq;
695 
696 	bzero(&vmirq, sizeof(vmirq));
697 	vmirq.cpuid = vcpu;
698 	vmirq.vector = vector;
699 
700 	return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
701 }
702 
703 int
704 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
705 {
706 	struct vm_lapic_msi vmmsi;
707 
708 	bzero(&vmmsi, sizeof(vmmsi));
709 	vmmsi.addr = addr;
710 	vmmsi.msg = msg;
711 
712 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
713 }
714 
715 int
716 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
717 {
718 	struct vm_ioapic_irq ioapic_irq;
719 
720 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
721 	ioapic_irq.irq = irq;
722 
723 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
724 }
725 
726 int
727 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
728 {
729 	struct vm_ioapic_irq ioapic_irq;
730 
731 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
732 	ioapic_irq.irq = irq;
733 
734 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
735 }
736 
737 int
738 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
739 {
740 	struct vm_ioapic_irq ioapic_irq;
741 
742 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
743 	ioapic_irq.irq = irq;
744 
745 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
746 }
747 
748 int
749 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
750 {
751 
752 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
753 }
754 
755 int
756 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
757 {
758 	struct vm_isa_irq isa_irq;
759 
760 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
761 	isa_irq.atpic_irq = atpic_irq;
762 	isa_irq.ioapic_irq = ioapic_irq;
763 
764 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
765 }
766 
767 int
768 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
769 {
770 	struct vm_isa_irq isa_irq;
771 
772 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
773 	isa_irq.atpic_irq = atpic_irq;
774 	isa_irq.ioapic_irq = ioapic_irq;
775 
776 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
777 }
778 
779 int
780 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
781 {
782 	struct vm_isa_irq isa_irq;
783 
784 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
785 	isa_irq.atpic_irq = atpic_irq;
786 	isa_irq.ioapic_irq = ioapic_irq;
787 
788 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
789 }
790 
791 int
792 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
793     enum vm_intr_trigger trigger)
794 {
795 	struct vm_isa_irq_trigger isa_irq_trigger;
796 
797 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
798 	isa_irq_trigger.atpic_irq = atpic_irq;
799 	isa_irq_trigger.trigger = trigger;
800 
801 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
802 }
803 
804 int
805 vm_inject_nmi(struct vmctx *ctx, int vcpu)
806 {
807 	struct vm_nmi vmnmi;
808 
809 	bzero(&vmnmi, sizeof(vmnmi));
810 	vmnmi.cpuid = vcpu;
811 
812 	return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
813 }
814 
815 static struct {
816 	const char	*name;
817 	int		type;
818 } capstrmap[] = {
819 	{ "hlt_exit",		VM_CAP_HALT_EXIT },
820 	{ "mtrap_exit",		VM_CAP_MTRAP_EXIT },
821 	{ "pause_exit",		VM_CAP_PAUSE_EXIT },
822 	{ "unrestricted_guest",	VM_CAP_UNRESTRICTED_GUEST },
823 	{ "enable_invpcid",	VM_CAP_ENABLE_INVPCID },
824 	{ 0 }
825 };
826 
827 int
828 vm_capability_name2type(const char *capname)
829 {
830 	int i;
831 
832 	for (i = 0; capstrmap[i].name != NULL && capname != NULL; i++) {
833 		if (strcmp(capstrmap[i].name, capname) == 0)
834 			return (capstrmap[i].type);
835 	}
836 
837 	return (-1);
838 }
839 
840 const char *
841 vm_capability_type2name(int type)
842 {
843 	int i;
844 
845 	for (i = 0; capstrmap[i].name != NULL; i++) {
846 		if (capstrmap[i].type == type)
847 			return (capstrmap[i].name);
848 	}
849 
850 	return (NULL);
851 }
852 
853 int
854 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
855 		  int *retval)
856 {
857 	int error;
858 	struct vm_capability vmcap;
859 
860 	bzero(&vmcap, sizeof(vmcap));
861 	vmcap.cpuid = vcpu;
862 	vmcap.captype = cap;
863 
864 	error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
865 	*retval = vmcap.capval;
866 	return (error);
867 }
868 
869 int
870 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
871 {
872 	struct vm_capability vmcap;
873 
874 	bzero(&vmcap, sizeof(vmcap));
875 	vmcap.cpuid = vcpu;
876 	vmcap.captype = cap;
877 	vmcap.capval = val;
878 
879 	return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
880 }
881 
882 int
883 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
884 {
885 	struct vm_pptdev pptdev;
886 
887 	bzero(&pptdev, sizeof(pptdev));
888 	pptdev.bus = bus;
889 	pptdev.slot = slot;
890 	pptdev.func = func;
891 
892 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
893 }
894 
895 int
896 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
897 {
898 	struct vm_pptdev pptdev;
899 
900 	bzero(&pptdev, sizeof(pptdev));
901 	pptdev.bus = bus;
902 	pptdev.slot = slot;
903 	pptdev.func = func;
904 
905 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
906 }
907 
908 int
909 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
910 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
911 {
912 	struct vm_pptdev_mmio pptmmio;
913 
914 	bzero(&pptmmio, sizeof(pptmmio));
915 	pptmmio.bus = bus;
916 	pptmmio.slot = slot;
917 	pptmmio.func = func;
918 	pptmmio.gpa = gpa;
919 	pptmmio.len = len;
920 	pptmmio.hpa = hpa;
921 
922 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
923 }
924 
925 int
926 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
927     uint64_t addr, uint64_t msg, int numvec)
928 {
929 	struct vm_pptdev_msi pptmsi;
930 
931 	bzero(&pptmsi, sizeof(pptmsi));
932 	pptmsi.vcpu = vcpu;
933 	pptmsi.bus = bus;
934 	pptmsi.slot = slot;
935 	pptmsi.func = func;
936 	pptmsi.msg = msg;
937 	pptmsi.addr = addr;
938 	pptmsi.numvec = numvec;
939 
940 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
941 }
942 
943 int
944 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
945     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
946 {
947 	struct vm_pptdev_msix pptmsix;
948 
949 	bzero(&pptmsix, sizeof(pptmsix));
950 	pptmsix.vcpu = vcpu;
951 	pptmsix.bus = bus;
952 	pptmsix.slot = slot;
953 	pptmsix.func = func;
954 	pptmsix.idx = idx;
955 	pptmsix.msg = msg;
956 	pptmsix.addr = addr;
957 	pptmsix.vector_control = vector_control;
958 
959 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
960 }
961 
962 uint64_t *
963 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
964 	     int *ret_entries)
965 {
966 	int error;
967 
968 	static struct vm_stats vmstats;
969 
970 	vmstats.cpuid = vcpu;
971 
972 	error = ioctl(ctx->fd, VM_STATS, &vmstats);
973 	if (error == 0) {
974 		if (ret_entries)
975 			*ret_entries = vmstats.num_entries;
976 		if (ret_tv)
977 			*ret_tv = vmstats.tv;
978 		return (vmstats.statbuf);
979 	} else
980 		return (NULL);
981 }
982 
983 const char *
984 vm_get_stat_desc(struct vmctx *ctx, int index)
985 {
986 	static struct vm_stat_desc statdesc;
987 
988 	statdesc.index = index;
989 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
990 		return (statdesc.desc);
991 	else
992 		return (NULL);
993 }
994 
995 int
996 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
997 {
998 	int error;
999 	struct vm_x2apic x2apic;
1000 
1001 	bzero(&x2apic, sizeof(x2apic));
1002 	x2apic.cpuid = vcpu;
1003 
1004 	error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
1005 	*state = x2apic.state;
1006 	return (error);
1007 }
1008 
1009 int
1010 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
1011 {
1012 	int error;
1013 	struct vm_x2apic x2apic;
1014 
1015 	bzero(&x2apic, sizeof(x2apic));
1016 	x2apic.cpuid = vcpu;
1017 	x2apic.state = state;
1018 
1019 	error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
1020 
1021 	return (error);
1022 }
1023 
1024 /*
1025  * From Intel Vol 3a:
1026  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1027  */
1028 int
1029 vcpu_reset(struct vmctx *vmctx, int vcpu)
1030 {
1031 	int error;
1032 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1033 	uint32_t desc_access, desc_limit;
1034 	uint16_t sel;
1035 
1036 	zero = 0;
1037 
1038 	rflags = 0x2;
1039 	error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1040 	if (error)
1041 		goto done;
1042 
1043 	rip = 0xfff0;
1044 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1045 		goto done;
1046 
1047 	cr0 = CR0_NE;
1048 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1049 		goto done;
1050 
1051 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1052 		goto done;
1053 
1054 	cr4 = 0;
1055 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1056 		goto done;
1057 
1058 	/*
1059 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1060 	 */
1061 	desc_base = 0xffff0000;
1062 	desc_limit = 0xffff;
1063 	desc_access = 0x0093;
1064 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1065 			    desc_base, desc_limit, desc_access);
1066 	if (error)
1067 		goto done;
1068 
1069 	sel = 0xf000;
1070 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1071 		goto done;
1072 
1073 	/*
1074 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1075 	 */
1076 	desc_base = 0;
1077 	desc_limit = 0xffff;
1078 	desc_access = 0x0093;
1079 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1080 			    desc_base, desc_limit, desc_access);
1081 	if (error)
1082 		goto done;
1083 
1084 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1085 			    desc_base, desc_limit, desc_access);
1086 	if (error)
1087 		goto done;
1088 
1089 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1090 			    desc_base, desc_limit, desc_access);
1091 	if (error)
1092 		goto done;
1093 
1094 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1095 			    desc_base, desc_limit, desc_access);
1096 	if (error)
1097 		goto done;
1098 
1099 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1100 			    desc_base, desc_limit, desc_access);
1101 	if (error)
1102 		goto done;
1103 
1104 	sel = 0;
1105 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1106 		goto done;
1107 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1108 		goto done;
1109 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1110 		goto done;
1111 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1112 		goto done;
1113 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1114 		goto done;
1115 
1116 	/* General purpose registers */
1117 	rdx = 0xf00;
1118 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1119 		goto done;
1120 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1121 		goto done;
1122 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1123 		goto done;
1124 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1125 		goto done;
1126 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1127 		goto done;
1128 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1129 		goto done;
1130 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1131 		goto done;
1132 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1133 		goto done;
1134 
1135 	/* GDTR, IDTR */
1136 	desc_base = 0;
1137 	desc_limit = 0xffff;
1138 	desc_access = 0;
1139 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1140 			    desc_base, desc_limit, desc_access);
1141 	if (error != 0)
1142 		goto done;
1143 
1144 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1145 			    desc_base, desc_limit, desc_access);
1146 	if (error != 0)
1147 		goto done;
1148 
1149 	/* TR */
1150 	desc_base = 0;
1151 	desc_limit = 0xffff;
1152 	desc_access = 0x0000008b;
1153 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1154 	if (error)
1155 		goto done;
1156 
1157 	sel = 0;
1158 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1159 		goto done;
1160 
1161 	/* LDTR */
1162 	desc_base = 0;
1163 	desc_limit = 0xffff;
1164 	desc_access = 0x00000082;
1165 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1166 			    desc_limit, desc_access);
1167 	if (error)
1168 		goto done;
1169 
1170 	sel = 0;
1171 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1172 		goto done;
1173 
1174 	/* XXX cr2, debug registers */
1175 
1176 	error = 0;
1177 done:
1178 	return (error);
1179 }
1180 
1181 int
1182 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1183 {
1184 	int error, i;
1185 	struct vm_gpa_pte gpapte;
1186 
1187 	bzero(&gpapte, sizeof(gpapte));
1188 	gpapte.gpa = gpa;
1189 
1190 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1191 
1192 	if (error == 0) {
1193 		*num = gpapte.ptenum;
1194 		for (i = 0; i < gpapte.ptenum; i++)
1195 			pte[i] = gpapte.pte[i];
1196 	}
1197 
1198 	return (error);
1199 }
1200 
1201 int
1202 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1203 {
1204 	int error;
1205 	struct vm_hpet_cap cap;
1206 
1207 	bzero(&cap, sizeof(struct vm_hpet_cap));
1208 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1209 	if (capabilities != NULL)
1210 		*capabilities = cap.capabilities;
1211 	return (error);
1212 }
1213 
1214 int
1215 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1216     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1217 {
1218 	struct vm_gla2gpa gg;
1219 	int error;
1220 
1221 	bzero(&gg, sizeof(struct vm_gla2gpa));
1222 	gg.vcpuid = vcpu;
1223 	gg.prot = prot;
1224 	gg.gla = gla;
1225 	gg.paging = *paging;
1226 
1227 	error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1228 	if (error == 0) {
1229 		*fault = gg.fault;
1230 		*gpa = gg.gpa;
1231 	}
1232 	return (error);
1233 }
1234 
1235 int
1236 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1237     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1238 {
1239 	struct vm_gla2gpa gg;
1240 	int error;
1241 
1242 	bzero(&gg, sizeof(struct vm_gla2gpa));
1243 	gg.vcpuid = vcpu;
1244 	gg.prot = prot;
1245 	gg.gla = gla;
1246 	gg.paging = *paging;
1247 
1248 	error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg);
1249 	if (error == 0) {
1250 		*fault = gg.fault;
1251 		*gpa = gg.gpa;
1252 	}
1253 	return (error);
1254 }
1255 
1256 #ifndef min
1257 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
1258 #endif
1259 
1260 int
1261 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1262     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1263     int *fault)
1264 {
1265 	void *va;
1266 	uint64_t gpa;
1267 	int error, i, n, off;
1268 
1269 	for (i = 0; i < iovcnt; i++) {
1270 		iov[i].iov_base = 0;
1271 		iov[i].iov_len = 0;
1272 	}
1273 
1274 	while (len) {
1275 		assert(iovcnt > 0);
1276 		error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1277 		if (error || *fault)
1278 			return (error);
1279 
1280 		off = gpa & PAGE_MASK;
1281 		n = min(len, PAGE_SIZE - off);
1282 
1283 		va = vm_map_gpa(ctx, gpa, n);
1284 		if (va == NULL)
1285 			return (EFAULT);
1286 
1287 		iov->iov_base = va;
1288 		iov->iov_len = n;
1289 		iov++;
1290 		iovcnt--;
1291 
1292 		gla += n;
1293 		len -= n;
1294 	}
1295 	return (0);
1296 }
1297 
1298 void
1299 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt)
1300 {
1301 
1302 	return;
1303 }
1304 
1305 void
1306 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len)
1307 {
1308 	const char *src;
1309 	char *dst;
1310 	size_t n;
1311 
1312 	dst = vp;
1313 	while (len) {
1314 		assert(iov->iov_len);
1315 		n = min(len, iov->iov_len);
1316 		src = iov->iov_base;
1317 		bcopy(src, dst, n);
1318 
1319 		iov++;
1320 		dst += n;
1321 		len -= n;
1322 	}
1323 }
1324 
1325 void
1326 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov,
1327     size_t len)
1328 {
1329 	const char *src;
1330 	char *dst;
1331 	size_t n;
1332 
1333 	src = vp;
1334 	while (len) {
1335 		assert(iov->iov_len);
1336 		n = min(len, iov->iov_len);
1337 		dst = iov->iov_base;
1338 		bcopy(src, dst, n);
1339 
1340 		iov++;
1341 		src += n;
1342 		len -= n;
1343 	}
1344 }
1345 
1346 static int
1347 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1348 {
1349 	struct vm_cpuset vm_cpuset;
1350 	int error;
1351 
1352 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1353 	vm_cpuset.which = which;
1354 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1355 	vm_cpuset.cpus = cpus;
1356 
1357 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1358 	return (error);
1359 }
1360 
1361 int
1362 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1363 {
1364 
1365 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1366 }
1367 
1368 int
1369 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1370 {
1371 
1372 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1373 }
1374 
1375 int
1376 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1377 {
1378 
1379 	return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1380 }
1381 
1382 int
1383 vm_activate_cpu(struct vmctx *ctx, int vcpu)
1384 {
1385 	struct vm_activate_cpu ac;
1386 	int error;
1387 
1388 	bzero(&ac, sizeof(struct vm_activate_cpu));
1389 	ac.vcpuid = vcpu;
1390 	error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1391 	return (error);
1392 }
1393 
1394 int
1395 vm_suspend_cpu(struct vmctx *ctx, int vcpu)
1396 {
1397 	struct vm_activate_cpu ac;
1398 	int error;
1399 
1400 	bzero(&ac, sizeof(struct vm_activate_cpu));
1401 	ac.vcpuid = vcpu;
1402 	error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1403 	return (error);
1404 }
1405 
1406 int
1407 vm_resume_cpu(struct vmctx *ctx, int vcpu)
1408 {
1409 	struct vm_activate_cpu ac;
1410 	int error;
1411 
1412 	bzero(&ac, sizeof(struct vm_activate_cpu));
1413 	ac.vcpuid = vcpu;
1414 	error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1415 	return (error);
1416 }
1417 
1418 int
1419 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1420 {
1421 	struct vm_intinfo vmii;
1422 	int error;
1423 
1424 	bzero(&vmii, sizeof(struct vm_intinfo));
1425 	vmii.vcpuid = vcpu;
1426 	error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1427 	if (error == 0) {
1428 		*info1 = vmii.info1;
1429 		*info2 = vmii.info2;
1430 	}
1431 	return (error);
1432 }
1433 
1434 int
1435 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1436 {
1437 	struct vm_intinfo vmii;
1438 	int error;
1439 
1440 	bzero(&vmii, sizeof(struct vm_intinfo));
1441 	vmii.vcpuid = vcpu;
1442 	vmii.info1 = info1;
1443 	error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1444 	return (error);
1445 }
1446 
1447 int
1448 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1449 {
1450 	struct vm_rtc_data rtcdata;
1451 	int error;
1452 
1453 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1454 	rtcdata.offset = offset;
1455 	rtcdata.value = value;
1456 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1457 	return (error);
1458 }
1459 
1460 int
1461 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1462 {
1463 	struct vm_rtc_data rtcdata;
1464 	int error;
1465 
1466 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1467 	rtcdata.offset = offset;
1468 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1469 	if (error == 0)
1470 		*retval = rtcdata.value;
1471 	return (error);
1472 }
1473 
1474 int
1475 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1476 {
1477 	struct vm_rtc_time rtctime;
1478 	int error;
1479 
1480 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1481 	rtctime.secs = secs;
1482 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1483 	return (error);
1484 }
1485 
1486 int
1487 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1488 {
1489 	struct vm_rtc_time rtctime;
1490 	int error;
1491 
1492 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1493 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1494 	if (error == 0)
1495 		*secs = rtctime.secs;
1496 	return (error);
1497 }
1498 
1499 int
1500 vm_restart_instruction(void *arg, int vcpu)
1501 {
1502 	struct vmctx *ctx = arg;
1503 
1504 	return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1505 }
1506 
1507 int
1508 vm_set_topology(struct vmctx *ctx,
1509     uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1510 {
1511 	struct vm_cpu_topology topology;
1512 
1513 	bzero(&topology, sizeof (struct vm_cpu_topology));
1514 	topology.sockets = sockets;
1515 	topology.cores = cores;
1516 	topology.threads = threads;
1517 	topology.maxcpus = maxcpus;
1518 	return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1519 }
1520 
1521 int
1522 vm_get_topology(struct vmctx *ctx,
1523     uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1524 {
1525 	struct vm_cpu_topology topology;
1526 	int error;
1527 
1528 	bzero(&topology, sizeof (struct vm_cpu_topology));
1529 	error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1530 	if (error == 0) {
1531 		*sockets = topology.sockets;
1532 		*cores = topology.cores;
1533 		*threads = topology.threads;
1534 		*maxcpus = topology.maxcpus;
1535 	}
1536 	return (error);
1537 }
1538 
1539 int
1540 vm_get_device_fd(struct vmctx *ctx)
1541 {
1542 
1543 	return (ctx->fd);
1544 }
1545 
1546 const cap_ioctl_t *
1547 vm_get_ioctls(size_t *len)
1548 {
1549 	cap_ioctl_t *cmds;
1550 	/* keep in sync with machine/vmm_dev.h */
1551 	static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
1552 	    VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
1553 	    VM_MMAP_GETNEXT, VM_SET_REGISTER, VM_GET_REGISTER,
1554 	    VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
1555 	    VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
1556 	    VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
1557 	    VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
1558 	    VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
1559 	    VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
1560 	    VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
1561 	    VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
1562 	    VM_PPTDEV_MSIX, VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
1563 	    VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
1564 	    VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
1565 	    VM_GLA2GPA_NOFAULT,
1566 	    VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
1567 	    VM_SET_INTINFO, VM_GET_INTINFO,
1568 	    VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
1569 	    VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY };
1570 
1571 	if (len == NULL) {
1572 		cmds = malloc(sizeof(vm_ioctl_cmds));
1573 		if (cmds == NULL)
1574 			return (NULL);
1575 		bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
1576 		return (cmds);
1577 	}
1578 
1579 	*len = nitems(vm_ioctl_cmds);
1580 	return (NULL);
1581 }
1582