1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/sysctl.h> 36 #include <sys/ioctl.h> 37 #include <sys/linker.h> 38 #include <sys/mman.h> 39 #include <sys/module.h> 40 #include <sys/_iovec.h> 41 #include <sys/cpuset.h> 42 43 #include <x86/segments.h> 44 #include <machine/specialreg.h> 45 46 #include <errno.h> 47 #include <stdio.h> 48 #include <stdlib.h> 49 #include <assert.h> 50 #include <string.h> 51 #include <fcntl.h> 52 #include <unistd.h> 53 54 #include <libutil.h> 55 56 #include <machine/vmm.h> 57 #include <machine/vmm_dev.h> 58 59 #include "vmmapi.h" 60 61 #define MB (1024 * 1024UL) 62 #define GB (1024 * 1024 * 1024UL) 63 64 /* 65 * Size of the guard region before and after the virtual address space 66 * mapping the guest physical memory. This must be a multiple of the 67 * superpage size for performance reasons. 68 */ 69 #define VM_MMAP_GUARD_SIZE (4 * MB) 70 71 #define PROT_RW (PROT_READ | PROT_WRITE) 72 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 73 74 struct vmctx { 75 int fd; 76 uint32_t lowmem_limit; 77 int memflags; 78 size_t lowmem; 79 size_t highmem; 80 char *baseaddr; 81 char *name; 82 }; 83 84 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 85 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 86 87 static int 88 vm_device_open(const char *name) 89 { 90 int fd, len; 91 char *vmfile; 92 93 len = strlen("/dev/vmm/") + strlen(name) + 1; 94 vmfile = malloc(len); 95 assert(vmfile != NULL); 96 snprintf(vmfile, len, "/dev/vmm/%s", name); 97 98 /* Open the device file */ 99 fd = open(vmfile, O_RDWR, 0); 100 101 free(vmfile); 102 return (fd); 103 } 104 105 int 106 vm_create(const char *name) 107 { 108 /* Try to load vmm(4) module before creating a guest. */ 109 if (modfind("vmm") < 0) 110 kldload("vmm"); 111 return (CREATE((char *)name)); 112 } 113 114 struct vmctx * 115 vm_open(const char *name) 116 { 117 struct vmctx *vm; 118 119 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 120 assert(vm != NULL); 121 122 vm->fd = -1; 123 vm->memflags = 0; 124 vm->lowmem_limit = 3 * GB; 125 vm->name = (char *)(vm + 1); 126 strcpy(vm->name, name); 127 128 if ((vm->fd = vm_device_open(vm->name)) < 0) 129 goto err; 130 131 return (vm); 132 err: 133 vm_destroy(vm); 134 return (NULL); 135 } 136 137 void 138 vm_destroy(struct vmctx *vm) 139 { 140 assert(vm != NULL); 141 142 if (vm->fd >= 0) 143 close(vm->fd); 144 DESTROY(vm->name); 145 146 free(vm); 147 } 148 149 int 150 vm_parse_memsize(const char *optarg, size_t *ret_memsize) 151 { 152 char *endptr; 153 size_t optval; 154 int error; 155 156 optval = strtoul(optarg, &endptr, 0); 157 if (*optarg != '\0' && *endptr == '\0') { 158 /* 159 * For the sake of backward compatibility if the memory size 160 * specified on the command line is less than a megabyte then 161 * it is interpreted as being in units of MB. 162 */ 163 if (optval < MB) 164 optval *= MB; 165 *ret_memsize = optval; 166 error = 0; 167 } else 168 error = expand_number(optarg, ret_memsize); 169 170 return (error); 171 } 172 173 uint32_t 174 vm_get_lowmem_limit(struct vmctx *ctx) 175 { 176 177 return (ctx->lowmem_limit); 178 } 179 180 void 181 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 182 { 183 184 ctx->lowmem_limit = limit; 185 } 186 187 void 188 vm_set_memflags(struct vmctx *ctx, int flags) 189 { 190 191 ctx->memflags = flags; 192 } 193 194 int 195 vm_get_memflags(struct vmctx *ctx) 196 { 197 198 return (ctx->memflags); 199 } 200 201 /* 202 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 203 */ 204 int 205 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 206 size_t len, int prot) 207 { 208 struct vm_memmap memmap; 209 int error, flags; 210 211 memmap.gpa = gpa; 212 memmap.segid = segid; 213 memmap.segoff = off; 214 memmap.len = len; 215 memmap.prot = prot; 216 memmap.flags = 0; 217 218 if (ctx->memflags & VM_MEM_F_WIRED) 219 memmap.flags |= VM_MEMMAP_F_WIRED; 220 221 /* 222 * If this mapping already exists then don't create it again. This 223 * is the common case for SYSMEM mappings created by bhyveload(8). 224 */ 225 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 226 if (error == 0 && gpa == memmap.gpa) { 227 if (segid != memmap.segid || off != memmap.segoff || 228 prot != memmap.prot || flags != memmap.flags) { 229 errno = EEXIST; 230 return (-1); 231 } else { 232 return (0); 233 } 234 } 235 236 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 237 return (error); 238 } 239 240 int 241 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 242 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 243 { 244 struct vm_memmap memmap; 245 int error; 246 247 bzero(&memmap, sizeof(struct vm_memmap)); 248 memmap.gpa = *gpa; 249 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 250 if (error == 0) { 251 *gpa = memmap.gpa; 252 *segid = memmap.segid; 253 *segoff = memmap.segoff; 254 *len = memmap.len; 255 *prot = memmap.prot; 256 *flags = memmap.flags; 257 } 258 return (error); 259 } 260 261 /* 262 * Return 0 if the segments are identical and non-zero otherwise. 263 * 264 * This is slightly complicated by the fact that only device memory segments 265 * are named. 266 */ 267 static int 268 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 269 { 270 271 if (len == len2) { 272 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 273 return (0); 274 } 275 return (-1); 276 } 277 278 static int 279 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 280 { 281 struct vm_memseg memseg; 282 size_t n; 283 int error; 284 285 /* 286 * If the memory segment has already been created then just return. 287 * This is the usual case for the SYSMEM segment created by userspace 288 * loaders like bhyveload(8). 289 */ 290 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 291 sizeof(memseg.name)); 292 if (error) 293 return (error); 294 295 if (memseg.len != 0) { 296 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 297 errno = EINVAL; 298 return (-1); 299 } else { 300 return (0); 301 } 302 } 303 304 bzero(&memseg, sizeof(struct vm_memseg)); 305 memseg.segid = segid; 306 memseg.len = len; 307 if (name != NULL) { 308 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 309 if (n >= sizeof(memseg.name)) { 310 errno = ENAMETOOLONG; 311 return (-1); 312 } 313 } 314 315 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 316 return (error); 317 } 318 319 int 320 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 321 size_t bufsize) 322 { 323 struct vm_memseg memseg; 324 size_t n; 325 int error; 326 327 memseg.segid = segid; 328 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 329 if (error == 0) { 330 *lenp = memseg.len; 331 n = strlcpy(namebuf, memseg.name, bufsize); 332 if (n >= bufsize) { 333 errno = ENAMETOOLONG; 334 error = -1; 335 } 336 } 337 return (error); 338 } 339 340 static int 341 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 342 { 343 char *ptr; 344 int error, flags; 345 346 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 347 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 348 if (error) 349 return (error); 350 351 flags = MAP_SHARED | MAP_FIXED; 352 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 353 flags |= MAP_NOCORE; 354 355 /* mmap into the process address space on the host */ 356 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 357 if (ptr == MAP_FAILED) 358 return (-1); 359 360 return (0); 361 } 362 363 int 364 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 365 { 366 size_t objsize, len; 367 vm_paddr_t gpa; 368 char *baseaddr, *ptr; 369 int error; 370 371 assert(vms == VM_MMAP_ALL); 372 373 /* 374 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 375 * create another 'highmem' segment above 4GB for the remainder. 376 */ 377 if (memsize > ctx->lowmem_limit) { 378 ctx->lowmem = ctx->lowmem_limit; 379 ctx->highmem = memsize - ctx->lowmem_limit; 380 objsize = 4*GB + ctx->highmem; 381 } else { 382 ctx->lowmem = memsize; 383 ctx->highmem = 0; 384 objsize = ctx->lowmem; 385 } 386 387 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 388 if (error) 389 return (error); 390 391 /* 392 * Stake out a contiguous region covering the guest physical memory 393 * and the adjoining guard regions. 394 */ 395 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 396 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 397 if (ptr == MAP_FAILED) 398 return (-1); 399 400 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 401 if (ctx->highmem > 0) { 402 gpa = 4*GB; 403 len = ctx->highmem; 404 error = setup_memory_segment(ctx, gpa, len, baseaddr); 405 if (error) 406 return (error); 407 } 408 409 if (ctx->lowmem > 0) { 410 gpa = 0; 411 len = ctx->lowmem; 412 error = setup_memory_segment(ctx, gpa, len, baseaddr); 413 if (error) 414 return (error); 415 } 416 417 ctx->baseaddr = baseaddr; 418 419 return (0); 420 } 421 422 /* 423 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 424 * the lowmem or highmem regions. 425 * 426 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 427 * The instruction emulation code depends on this behavior. 428 */ 429 void * 430 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 431 { 432 433 if (ctx->lowmem > 0) { 434 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 435 gaddr + len <= ctx->lowmem) 436 return (ctx->baseaddr + gaddr); 437 } 438 439 if (ctx->highmem > 0) { 440 if (gaddr >= 4*GB) { 441 if (gaddr < 4*GB + ctx->highmem && 442 len <= ctx->highmem && 443 gaddr + len <= 4*GB + ctx->highmem) 444 return (ctx->baseaddr + gaddr); 445 } 446 } 447 448 return (NULL); 449 } 450 451 size_t 452 vm_get_lowmem_size(struct vmctx *ctx) 453 { 454 455 return (ctx->lowmem); 456 } 457 458 size_t 459 vm_get_highmem_size(struct vmctx *ctx) 460 { 461 462 return (ctx->highmem); 463 } 464 465 void * 466 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 467 { 468 char pathname[MAXPATHLEN]; 469 size_t len2; 470 char *base, *ptr; 471 int fd, error, flags; 472 473 fd = -1; 474 ptr = MAP_FAILED; 475 if (name == NULL || strlen(name) == 0) { 476 errno = EINVAL; 477 goto done; 478 } 479 480 error = vm_alloc_memseg(ctx, segid, len, name); 481 if (error) 482 goto done; 483 484 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 485 strlcat(pathname, ctx->name, sizeof(pathname)); 486 strlcat(pathname, ".", sizeof(pathname)); 487 strlcat(pathname, name, sizeof(pathname)); 488 489 fd = open(pathname, O_RDWR); 490 if (fd < 0) 491 goto done; 492 493 /* 494 * Stake out a contiguous region covering the device memory and the 495 * adjoining guard regions. 496 */ 497 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 498 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 499 0); 500 if (base == MAP_FAILED) 501 goto done; 502 503 flags = MAP_SHARED | MAP_FIXED; 504 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 505 flags |= MAP_NOCORE; 506 507 /* mmap the devmem region in the host address space */ 508 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 509 done: 510 if (fd >= 0) 511 close(fd); 512 return (ptr); 513 } 514 515 int 516 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 517 uint64_t base, uint32_t limit, uint32_t access) 518 { 519 int error; 520 struct vm_seg_desc vmsegdesc; 521 522 bzero(&vmsegdesc, sizeof(vmsegdesc)); 523 vmsegdesc.cpuid = vcpu; 524 vmsegdesc.regnum = reg; 525 vmsegdesc.desc.base = base; 526 vmsegdesc.desc.limit = limit; 527 vmsegdesc.desc.access = access; 528 529 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 530 return (error); 531 } 532 533 int 534 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 535 uint64_t *base, uint32_t *limit, uint32_t *access) 536 { 537 int error; 538 struct vm_seg_desc vmsegdesc; 539 540 bzero(&vmsegdesc, sizeof(vmsegdesc)); 541 vmsegdesc.cpuid = vcpu; 542 vmsegdesc.regnum = reg; 543 544 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 545 if (error == 0) { 546 *base = vmsegdesc.desc.base; 547 *limit = vmsegdesc.desc.limit; 548 *access = vmsegdesc.desc.access; 549 } 550 return (error); 551 } 552 553 int 554 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 555 { 556 int error; 557 558 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 559 &seg_desc->access); 560 return (error); 561 } 562 563 int 564 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 565 { 566 int error; 567 struct vm_register vmreg; 568 569 bzero(&vmreg, sizeof(vmreg)); 570 vmreg.cpuid = vcpu; 571 vmreg.regnum = reg; 572 vmreg.regval = val; 573 574 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 575 return (error); 576 } 577 578 int 579 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 580 { 581 int error; 582 struct vm_register vmreg; 583 584 bzero(&vmreg, sizeof(vmreg)); 585 vmreg.cpuid = vcpu; 586 vmreg.regnum = reg; 587 588 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 589 *ret_val = vmreg.regval; 590 return (error); 591 } 592 593 int 594 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 595 const int *regnums, uint64_t *regvals) 596 { 597 int error; 598 struct vm_register_set vmregset; 599 600 bzero(&vmregset, sizeof(vmregset)); 601 vmregset.cpuid = vcpu; 602 vmregset.count = count; 603 vmregset.regnums = regnums; 604 vmregset.regvals = regvals; 605 606 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 607 return (error); 608 } 609 610 int 611 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 612 const int *regnums, uint64_t *regvals) 613 { 614 int error; 615 struct vm_register_set vmregset; 616 617 bzero(&vmregset, sizeof(vmregset)); 618 vmregset.cpuid = vcpu; 619 vmregset.count = count; 620 vmregset.regnums = regnums; 621 vmregset.regvals = regvals; 622 623 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 624 return (error); 625 } 626 627 int 628 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit) 629 { 630 int error; 631 struct vm_run vmrun; 632 633 bzero(&vmrun, sizeof(vmrun)); 634 vmrun.cpuid = vcpu; 635 636 error = ioctl(ctx->fd, VM_RUN, &vmrun); 637 bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit)); 638 return (error); 639 } 640 641 int 642 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 643 { 644 struct vm_suspend vmsuspend; 645 646 bzero(&vmsuspend, sizeof(vmsuspend)); 647 vmsuspend.how = how; 648 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 649 } 650 651 int 652 vm_reinit(struct vmctx *ctx) 653 { 654 655 return (ioctl(ctx->fd, VM_REINIT, 0)); 656 } 657 658 int 659 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 660 uint32_t errcode, int restart_instruction) 661 { 662 struct vm_exception exc; 663 664 exc.cpuid = vcpu; 665 exc.vector = vector; 666 exc.error_code = errcode; 667 exc.error_code_valid = errcode_valid; 668 exc.restart_instruction = restart_instruction; 669 670 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 671 } 672 673 int 674 vm_apicid2vcpu(struct vmctx *ctx, int apicid) 675 { 676 /* 677 * The apic id associated with the 'vcpu' has the same numerical value 678 * as the 'vcpu' itself. 679 */ 680 return (apicid); 681 } 682 683 int 684 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 685 { 686 struct vm_lapic_irq vmirq; 687 688 bzero(&vmirq, sizeof(vmirq)); 689 vmirq.cpuid = vcpu; 690 vmirq.vector = vector; 691 692 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 693 } 694 695 int 696 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 697 { 698 struct vm_lapic_irq vmirq; 699 700 bzero(&vmirq, sizeof(vmirq)); 701 vmirq.cpuid = vcpu; 702 vmirq.vector = vector; 703 704 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 705 } 706 707 int 708 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 709 { 710 struct vm_lapic_msi vmmsi; 711 712 bzero(&vmmsi, sizeof(vmmsi)); 713 vmmsi.addr = addr; 714 vmmsi.msg = msg; 715 716 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 717 } 718 719 int 720 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 721 { 722 struct vm_ioapic_irq ioapic_irq; 723 724 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 725 ioapic_irq.irq = irq; 726 727 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 728 } 729 730 int 731 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 732 { 733 struct vm_ioapic_irq ioapic_irq; 734 735 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 736 ioapic_irq.irq = irq; 737 738 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 739 } 740 741 int 742 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 743 { 744 struct vm_ioapic_irq ioapic_irq; 745 746 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 747 ioapic_irq.irq = irq; 748 749 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 750 } 751 752 int 753 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 754 { 755 756 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 757 } 758 759 int 760 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 761 { 762 struct vm_isa_irq isa_irq; 763 764 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 765 isa_irq.atpic_irq = atpic_irq; 766 isa_irq.ioapic_irq = ioapic_irq; 767 768 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 769 } 770 771 int 772 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 773 { 774 struct vm_isa_irq isa_irq; 775 776 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 777 isa_irq.atpic_irq = atpic_irq; 778 isa_irq.ioapic_irq = ioapic_irq; 779 780 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 781 } 782 783 int 784 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 785 { 786 struct vm_isa_irq isa_irq; 787 788 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 789 isa_irq.atpic_irq = atpic_irq; 790 isa_irq.ioapic_irq = ioapic_irq; 791 792 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 793 } 794 795 int 796 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 797 enum vm_intr_trigger trigger) 798 { 799 struct vm_isa_irq_trigger isa_irq_trigger; 800 801 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 802 isa_irq_trigger.atpic_irq = atpic_irq; 803 isa_irq_trigger.trigger = trigger; 804 805 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 806 } 807 808 int 809 vm_inject_nmi(struct vmctx *ctx, int vcpu) 810 { 811 struct vm_nmi vmnmi; 812 813 bzero(&vmnmi, sizeof(vmnmi)); 814 vmnmi.cpuid = vcpu; 815 816 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 817 } 818 819 static struct { 820 const char *name; 821 int type; 822 } capstrmap[] = { 823 { "hlt_exit", VM_CAP_HALT_EXIT }, 824 { "mtrap_exit", VM_CAP_MTRAP_EXIT }, 825 { "pause_exit", VM_CAP_PAUSE_EXIT }, 826 { "unrestricted_guest", VM_CAP_UNRESTRICTED_GUEST }, 827 { "enable_invpcid", VM_CAP_ENABLE_INVPCID }, 828 { 0 } 829 }; 830 831 int 832 vm_capability_name2type(const char *capname) 833 { 834 int i; 835 836 for (i = 0; capstrmap[i].name != NULL && capname != NULL; i++) { 837 if (strcmp(capstrmap[i].name, capname) == 0) 838 return (capstrmap[i].type); 839 } 840 841 return (-1); 842 } 843 844 const char * 845 vm_capability_type2name(int type) 846 { 847 int i; 848 849 for (i = 0; capstrmap[i].name != NULL; i++) { 850 if (capstrmap[i].type == type) 851 return (capstrmap[i].name); 852 } 853 854 return (NULL); 855 } 856 857 int 858 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 859 int *retval) 860 { 861 int error; 862 struct vm_capability vmcap; 863 864 bzero(&vmcap, sizeof(vmcap)); 865 vmcap.cpuid = vcpu; 866 vmcap.captype = cap; 867 868 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 869 *retval = vmcap.capval; 870 return (error); 871 } 872 873 int 874 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 875 { 876 struct vm_capability vmcap; 877 878 bzero(&vmcap, sizeof(vmcap)); 879 vmcap.cpuid = vcpu; 880 vmcap.captype = cap; 881 vmcap.capval = val; 882 883 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 884 } 885 886 int 887 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 888 { 889 struct vm_pptdev pptdev; 890 891 bzero(&pptdev, sizeof(pptdev)); 892 pptdev.bus = bus; 893 pptdev.slot = slot; 894 pptdev.func = func; 895 896 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 897 } 898 899 int 900 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 901 { 902 struct vm_pptdev pptdev; 903 904 bzero(&pptdev, sizeof(pptdev)); 905 pptdev.bus = bus; 906 pptdev.slot = slot; 907 pptdev.func = func; 908 909 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 910 } 911 912 int 913 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 914 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 915 { 916 struct vm_pptdev_mmio pptmmio; 917 918 bzero(&pptmmio, sizeof(pptmmio)); 919 pptmmio.bus = bus; 920 pptmmio.slot = slot; 921 pptmmio.func = func; 922 pptmmio.gpa = gpa; 923 pptmmio.len = len; 924 pptmmio.hpa = hpa; 925 926 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 927 } 928 929 int 930 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 931 uint64_t addr, uint64_t msg, int numvec) 932 { 933 struct vm_pptdev_msi pptmsi; 934 935 bzero(&pptmsi, sizeof(pptmsi)); 936 pptmsi.vcpu = vcpu; 937 pptmsi.bus = bus; 938 pptmsi.slot = slot; 939 pptmsi.func = func; 940 pptmsi.msg = msg; 941 pptmsi.addr = addr; 942 pptmsi.numvec = numvec; 943 944 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 945 } 946 947 int 948 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 949 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 950 { 951 struct vm_pptdev_msix pptmsix; 952 953 bzero(&pptmsix, sizeof(pptmsix)); 954 pptmsix.vcpu = vcpu; 955 pptmsix.bus = bus; 956 pptmsix.slot = slot; 957 pptmsix.func = func; 958 pptmsix.idx = idx; 959 pptmsix.msg = msg; 960 pptmsix.addr = addr; 961 pptmsix.vector_control = vector_control; 962 963 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 964 } 965 966 uint64_t * 967 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 968 int *ret_entries) 969 { 970 int error; 971 972 static struct vm_stats vmstats; 973 974 vmstats.cpuid = vcpu; 975 976 error = ioctl(ctx->fd, VM_STATS, &vmstats); 977 if (error == 0) { 978 if (ret_entries) 979 *ret_entries = vmstats.num_entries; 980 if (ret_tv) 981 *ret_tv = vmstats.tv; 982 return (vmstats.statbuf); 983 } else 984 return (NULL); 985 } 986 987 const char * 988 vm_get_stat_desc(struct vmctx *ctx, int index) 989 { 990 static struct vm_stat_desc statdesc; 991 992 statdesc.index = index; 993 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 994 return (statdesc.desc); 995 else 996 return (NULL); 997 } 998 999 int 1000 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1001 { 1002 int error; 1003 struct vm_x2apic x2apic; 1004 1005 bzero(&x2apic, sizeof(x2apic)); 1006 x2apic.cpuid = vcpu; 1007 1008 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1009 *state = x2apic.state; 1010 return (error); 1011 } 1012 1013 int 1014 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1015 { 1016 int error; 1017 struct vm_x2apic x2apic; 1018 1019 bzero(&x2apic, sizeof(x2apic)); 1020 x2apic.cpuid = vcpu; 1021 x2apic.state = state; 1022 1023 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1024 1025 return (error); 1026 } 1027 1028 /* 1029 * From Intel Vol 3a: 1030 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1031 */ 1032 int 1033 vcpu_reset(struct vmctx *vmctx, int vcpu) 1034 { 1035 int error; 1036 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1037 uint32_t desc_access, desc_limit; 1038 uint16_t sel; 1039 1040 zero = 0; 1041 1042 rflags = 0x2; 1043 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1044 if (error) 1045 goto done; 1046 1047 rip = 0xfff0; 1048 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1049 goto done; 1050 1051 cr0 = CR0_NE; 1052 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1053 goto done; 1054 1055 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1056 goto done; 1057 1058 cr4 = 0; 1059 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1060 goto done; 1061 1062 /* 1063 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1064 */ 1065 desc_base = 0xffff0000; 1066 desc_limit = 0xffff; 1067 desc_access = 0x0093; 1068 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1069 desc_base, desc_limit, desc_access); 1070 if (error) 1071 goto done; 1072 1073 sel = 0xf000; 1074 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1075 goto done; 1076 1077 /* 1078 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1079 */ 1080 desc_base = 0; 1081 desc_limit = 0xffff; 1082 desc_access = 0x0093; 1083 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1084 desc_base, desc_limit, desc_access); 1085 if (error) 1086 goto done; 1087 1088 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1089 desc_base, desc_limit, desc_access); 1090 if (error) 1091 goto done; 1092 1093 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1094 desc_base, desc_limit, desc_access); 1095 if (error) 1096 goto done; 1097 1098 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1099 desc_base, desc_limit, desc_access); 1100 if (error) 1101 goto done; 1102 1103 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1104 desc_base, desc_limit, desc_access); 1105 if (error) 1106 goto done; 1107 1108 sel = 0; 1109 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1110 goto done; 1111 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1112 goto done; 1113 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1114 goto done; 1115 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1116 goto done; 1117 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1118 goto done; 1119 1120 /* General purpose registers */ 1121 rdx = 0xf00; 1122 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1123 goto done; 1124 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1125 goto done; 1126 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1127 goto done; 1128 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1129 goto done; 1130 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1131 goto done; 1132 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1133 goto done; 1134 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1135 goto done; 1136 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1137 goto done; 1138 1139 /* GDTR, IDTR */ 1140 desc_base = 0; 1141 desc_limit = 0xffff; 1142 desc_access = 0; 1143 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1144 desc_base, desc_limit, desc_access); 1145 if (error != 0) 1146 goto done; 1147 1148 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1149 desc_base, desc_limit, desc_access); 1150 if (error != 0) 1151 goto done; 1152 1153 /* TR */ 1154 desc_base = 0; 1155 desc_limit = 0xffff; 1156 desc_access = 0x0000008b; 1157 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1158 if (error) 1159 goto done; 1160 1161 sel = 0; 1162 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1163 goto done; 1164 1165 /* LDTR */ 1166 desc_base = 0; 1167 desc_limit = 0xffff; 1168 desc_access = 0x00000082; 1169 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1170 desc_limit, desc_access); 1171 if (error) 1172 goto done; 1173 1174 sel = 0; 1175 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1176 goto done; 1177 1178 /* XXX cr2, debug registers */ 1179 1180 error = 0; 1181 done: 1182 return (error); 1183 } 1184 1185 int 1186 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1187 { 1188 int error, i; 1189 struct vm_gpa_pte gpapte; 1190 1191 bzero(&gpapte, sizeof(gpapte)); 1192 gpapte.gpa = gpa; 1193 1194 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1195 1196 if (error == 0) { 1197 *num = gpapte.ptenum; 1198 for (i = 0; i < gpapte.ptenum; i++) 1199 pte[i] = gpapte.pte[i]; 1200 } 1201 1202 return (error); 1203 } 1204 1205 int 1206 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1207 { 1208 int error; 1209 struct vm_hpet_cap cap; 1210 1211 bzero(&cap, sizeof(struct vm_hpet_cap)); 1212 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1213 if (capabilities != NULL) 1214 *capabilities = cap.capabilities; 1215 return (error); 1216 } 1217 1218 int 1219 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1220 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1221 { 1222 struct vm_gla2gpa gg; 1223 int error; 1224 1225 bzero(&gg, sizeof(struct vm_gla2gpa)); 1226 gg.vcpuid = vcpu; 1227 gg.prot = prot; 1228 gg.gla = gla; 1229 gg.paging = *paging; 1230 1231 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1232 if (error == 0) { 1233 *fault = gg.fault; 1234 *gpa = gg.gpa; 1235 } 1236 return (error); 1237 } 1238 1239 int 1240 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1241 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1242 { 1243 struct vm_gla2gpa gg; 1244 int error; 1245 1246 bzero(&gg, sizeof(struct vm_gla2gpa)); 1247 gg.vcpuid = vcpu; 1248 gg.prot = prot; 1249 gg.gla = gla; 1250 gg.paging = *paging; 1251 1252 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1253 if (error == 0) { 1254 *fault = gg.fault; 1255 *gpa = gg.gpa; 1256 } 1257 return (error); 1258 } 1259 1260 #ifndef min 1261 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1262 #endif 1263 1264 int 1265 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1266 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1267 int *fault) 1268 { 1269 void *va; 1270 uint64_t gpa; 1271 int error, i, n, off; 1272 1273 for (i = 0; i < iovcnt; i++) { 1274 iov[i].iov_base = 0; 1275 iov[i].iov_len = 0; 1276 } 1277 1278 while (len) { 1279 assert(iovcnt > 0); 1280 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1281 if (error || *fault) 1282 return (error); 1283 1284 off = gpa & PAGE_MASK; 1285 n = min(len, PAGE_SIZE - off); 1286 1287 va = vm_map_gpa(ctx, gpa, n); 1288 if (va == NULL) 1289 return (EFAULT); 1290 1291 iov->iov_base = va; 1292 iov->iov_len = n; 1293 iov++; 1294 iovcnt--; 1295 1296 gla += n; 1297 len -= n; 1298 } 1299 return (0); 1300 } 1301 1302 void 1303 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt) 1304 { 1305 1306 return; 1307 } 1308 1309 void 1310 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len) 1311 { 1312 const char *src; 1313 char *dst; 1314 size_t n; 1315 1316 dst = vp; 1317 while (len) { 1318 assert(iov->iov_len); 1319 n = min(len, iov->iov_len); 1320 src = iov->iov_base; 1321 bcopy(src, dst, n); 1322 1323 iov++; 1324 dst += n; 1325 len -= n; 1326 } 1327 } 1328 1329 void 1330 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov, 1331 size_t len) 1332 { 1333 const char *src; 1334 char *dst; 1335 size_t n; 1336 1337 src = vp; 1338 while (len) { 1339 assert(iov->iov_len); 1340 n = min(len, iov->iov_len); 1341 dst = iov->iov_base; 1342 bcopy(src, dst, n); 1343 1344 iov++; 1345 src += n; 1346 len -= n; 1347 } 1348 } 1349 1350 static int 1351 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1352 { 1353 struct vm_cpuset vm_cpuset; 1354 int error; 1355 1356 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1357 vm_cpuset.which = which; 1358 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1359 vm_cpuset.cpus = cpus; 1360 1361 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1362 return (error); 1363 } 1364 1365 int 1366 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1367 { 1368 1369 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1370 } 1371 1372 int 1373 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1374 { 1375 1376 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1377 } 1378 1379 int 1380 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1381 { 1382 1383 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1384 } 1385 1386 int 1387 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1388 { 1389 struct vm_activate_cpu ac; 1390 int error; 1391 1392 bzero(&ac, sizeof(struct vm_activate_cpu)); 1393 ac.vcpuid = vcpu; 1394 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1395 return (error); 1396 } 1397 1398 int 1399 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1400 { 1401 struct vm_activate_cpu ac; 1402 int error; 1403 1404 bzero(&ac, sizeof(struct vm_activate_cpu)); 1405 ac.vcpuid = vcpu; 1406 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1407 return (error); 1408 } 1409 1410 int 1411 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1412 { 1413 struct vm_activate_cpu ac; 1414 int error; 1415 1416 bzero(&ac, sizeof(struct vm_activate_cpu)); 1417 ac.vcpuid = vcpu; 1418 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1419 return (error); 1420 } 1421 1422 int 1423 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1424 { 1425 struct vm_intinfo vmii; 1426 int error; 1427 1428 bzero(&vmii, sizeof(struct vm_intinfo)); 1429 vmii.vcpuid = vcpu; 1430 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1431 if (error == 0) { 1432 *info1 = vmii.info1; 1433 *info2 = vmii.info2; 1434 } 1435 return (error); 1436 } 1437 1438 int 1439 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1440 { 1441 struct vm_intinfo vmii; 1442 int error; 1443 1444 bzero(&vmii, sizeof(struct vm_intinfo)); 1445 vmii.vcpuid = vcpu; 1446 vmii.info1 = info1; 1447 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1448 return (error); 1449 } 1450 1451 int 1452 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1453 { 1454 struct vm_rtc_data rtcdata; 1455 int error; 1456 1457 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1458 rtcdata.offset = offset; 1459 rtcdata.value = value; 1460 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1461 return (error); 1462 } 1463 1464 int 1465 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1466 { 1467 struct vm_rtc_data rtcdata; 1468 int error; 1469 1470 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1471 rtcdata.offset = offset; 1472 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1473 if (error == 0) 1474 *retval = rtcdata.value; 1475 return (error); 1476 } 1477 1478 int 1479 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1480 { 1481 struct vm_rtc_time rtctime; 1482 int error; 1483 1484 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1485 rtctime.secs = secs; 1486 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1487 return (error); 1488 } 1489 1490 int 1491 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1492 { 1493 struct vm_rtc_time rtctime; 1494 int error; 1495 1496 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1497 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1498 if (error == 0) 1499 *secs = rtctime.secs; 1500 return (error); 1501 } 1502 1503 int 1504 vm_restart_instruction(void *arg, int vcpu) 1505 { 1506 struct vmctx *ctx = arg; 1507 1508 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1509 } 1510 1511 int 1512 vm_set_topology(struct vmctx *ctx, 1513 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1514 { 1515 struct vm_cpu_topology topology; 1516 1517 bzero(&topology, sizeof (struct vm_cpu_topology)); 1518 topology.sockets = sockets; 1519 topology.cores = cores; 1520 topology.threads = threads; 1521 topology.maxcpus = maxcpus; 1522 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1523 } 1524 1525 int 1526 vm_get_topology(struct vmctx *ctx, 1527 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1528 { 1529 struct vm_cpu_topology topology; 1530 int error; 1531 1532 bzero(&topology, sizeof (struct vm_cpu_topology)); 1533 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1534 if (error == 0) { 1535 *sockets = topology.sockets; 1536 *cores = topology.cores; 1537 *threads = topology.threads; 1538 *maxcpus = topology.maxcpus; 1539 } 1540 return (error); 1541 } 1542 1543 int 1544 vm_get_device_fd(struct vmctx *ctx) 1545 { 1546 1547 return (ctx->fd); 1548 } 1549 1550 const cap_ioctl_t * 1551 vm_get_ioctls(size_t *len) 1552 { 1553 cap_ioctl_t *cmds; 1554 /* keep in sync with machine/vmm_dev.h */ 1555 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1556 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1557 VM_MMAP_GETNEXT, VM_SET_REGISTER, VM_GET_REGISTER, 1558 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1559 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1560 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1561 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1562 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1563 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1564 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1565 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1566 VM_PPTDEV_MSIX, VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1567 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1568 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1569 VM_GLA2GPA_NOFAULT, 1570 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1571 VM_SET_INTINFO, VM_GET_INTINFO, 1572 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1573 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 1574 1575 if (len == NULL) { 1576 cmds = malloc(sizeof(vm_ioctl_cmds)); 1577 if (cmds == NULL) 1578 return (NULL); 1579 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1580 return (cmds); 1581 } 1582 1583 *len = nitems(vm_ioctl_cmds); 1584 return (NULL); 1585 } 1586