xref: /freebsd/lib/libvmmapi/vmmapi.c (revision d01f7b29a9cf3a4f651b8d66967b447cd3856685)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/sysctl.h>
34 #include <sys/ioctl.h>
35 #include <sys/mman.h>
36 #include <sys/_iovec.h>
37 #include <sys/cpuset.h>
38 
39 #include <x86/segments.h>
40 #include <machine/specialreg.h>
41 
42 #include <errno.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <assert.h>
46 #include <string.h>
47 #include <fcntl.h>
48 #include <unistd.h>
49 
50 #include <libutil.h>
51 
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 
55 #include "vmmapi.h"
56 
57 #define	MB	(1024 * 1024UL)
58 #define	GB	(1024 * 1024 * 1024UL)
59 
60 /*
61  * Size of the guard region before and after the virtual address space
62  * mapping the guest physical memory. This must be a multiple of the
63  * superpage size for performance reasons.
64  */
65 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
66 
67 #define	PROT_RW		(PROT_READ | PROT_WRITE)
68 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
69 
70 struct vmctx {
71 	int	fd;
72 	uint32_t lowmem_limit;
73 	int	memflags;
74 	size_t	lowmem;
75 	size_t	highmem;
76 	char	*baseaddr;
77 	char	*name;
78 };
79 
80 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
81 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
82 
83 static int
84 vm_device_open(const char *name)
85 {
86         int fd, len;
87         char *vmfile;
88 
89 	len = strlen("/dev/vmm/") + strlen(name) + 1;
90 	vmfile = malloc(len);
91 	assert(vmfile != NULL);
92 	snprintf(vmfile, len, "/dev/vmm/%s", name);
93 
94         /* Open the device file */
95         fd = open(vmfile, O_RDWR, 0);
96 
97 	free(vmfile);
98         return (fd);
99 }
100 
101 int
102 vm_create(const char *name)
103 {
104 
105 	return (CREATE((char *)name));
106 }
107 
108 struct vmctx *
109 vm_open(const char *name)
110 {
111 	struct vmctx *vm;
112 
113 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
114 	assert(vm != NULL);
115 
116 	vm->fd = -1;
117 	vm->memflags = 0;
118 	vm->lowmem_limit = 3 * GB;
119 	vm->name = (char *)(vm + 1);
120 	strcpy(vm->name, name);
121 
122 	if ((vm->fd = vm_device_open(vm->name)) < 0)
123 		goto err;
124 
125 	return (vm);
126 err:
127 	vm_destroy(vm);
128 	return (NULL);
129 }
130 
131 void
132 vm_destroy(struct vmctx *vm)
133 {
134 	assert(vm != NULL);
135 
136 	if (vm->fd >= 0)
137 		close(vm->fd);
138 	DESTROY(vm->name);
139 
140 	free(vm);
141 }
142 
143 int
144 vm_parse_memsize(const char *optarg, size_t *ret_memsize)
145 {
146 	char *endptr;
147 	size_t optval;
148 	int error;
149 
150 	optval = strtoul(optarg, &endptr, 0);
151 	if (*optarg != '\0' && *endptr == '\0') {
152 		/*
153 		 * For the sake of backward compatibility if the memory size
154 		 * specified on the command line is less than a megabyte then
155 		 * it is interpreted as being in units of MB.
156 		 */
157 		if (optval < MB)
158 			optval *= MB;
159 		*ret_memsize = optval;
160 		error = 0;
161 	} else
162 		error = expand_number(optarg, ret_memsize);
163 
164 	return (error);
165 }
166 
167 uint32_t
168 vm_get_lowmem_limit(struct vmctx *ctx)
169 {
170 
171 	return (ctx->lowmem_limit);
172 }
173 
174 void
175 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
176 {
177 
178 	ctx->lowmem_limit = limit;
179 }
180 
181 void
182 vm_set_memflags(struct vmctx *ctx, int flags)
183 {
184 
185 	ctx->memflags = flags;
186 }
187 
188 int
189 vm_get_memflags(struct vmctx *ctx)
190 {
191 
192 	return (ctx->memflags);
193 }
194 
195 /*
196  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
197  */
198 int
199 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
200     size_t len, int prot)
201 {
202 	struct vm_memmap memmap;
203 	int error, flags;
204 
205 	memmap.gpa = gpa;
206 	memmap.segid = segid;
207 	memmap.segoff = off;
208 	memmap.len = len;
209 	memmap.prot = prot;
210 	memmap.flags = 0;
211 
212 	if (ctx->memflags & VM_MEM_F_WIRED)
213 		memmap.flags |= VM_MEMMAP_F_WIRED;
214 
215 	/*
216 	 * If this mapping already exists then don't create it again. This
217 	 * is the common case for SYSMEM mappings created by bhyveload(8).
218 	 */
219 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
220 	if (error == 0 && gpa == memmap.gpa) {
221 		if (segid != memmap.segid || off != memmap.segoff ||
222 		    prot != memmap.prot || flags != memmap.flags) {
223 			errno = EEXIST;
224 			return (-1);
225 		} else {
226 			return (0);
227 		}
228 	}
229 
230 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
231 	return (error);
232 }
233 
234 int
235 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
236     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
237 {
238 	struct vm_memmap memmap;
239 	int error;
240 
241 	bzero(&memmap, sizeof(struct vm_memmap));
242 	memmap.gpa = *gpa;
243 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
244 	if (error == 0) {
245 		*gpa = memmap.gpa;
246 		*segid = memmap.segid;
247 		*segoff = memmap.segoff;
248 		*len = memmap.len;
249 		*prot = memmap.prot;
250 		*flags = memmap.flags;
251 	}
252 	return (error);
253 }
254 
255 /*
256  * Return 0 if the segments are identical and non-zero otherwise.
257  *
258  * This is slightly complicated by the fact that only device memory segments
259  * are named.
260  */
261 static int
262 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
263 {
264 
265 	if (len == len2) {
266 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
267 			return (0);
268 	}
269 	return (-1);
270 }
271 
272 static int
273 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
274 {
275 	struct vm_memseg memseg;
276 	size_t n;
277 	int error;
278 
279 	/*
280 	 * If the memory segment has already been created then just return.
281 	 * This is the usual case for the SYSMEM segment created by userspace
282 	 * loaders like bhyveload(8).
283 	 */
284 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
285 	    sizeof(memseg.name));
286 	if (error)
287 		return (error);
288 
289 	if (memseg.len != 0) {
290 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
291 			errno = EINVAL;
292 			return (-1);
293 		} else {
294 			return (0);
295 		}
296 	}
297 
298 	bzero(&memseg, sizeof(struct vm_memseg));
299 	memseg.segid = segid;
300 	memseg.len = len;
301 	if (name != NULL) {
302 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
303 		if (n >= sizeof(memseg.name)) {
304 			errno = ENAMETOOLONG;
305 			return (-1);
306 		}
307 	}
308 
309 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
310 	return (error);
311 }
312 
313 int
314 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
315     size_t bufsize)
316 {
317 	struct vm_memseg memseg;
318 	size_t n;
319 	int error;
320 
321 	memseg.segid = segid;
322 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
323 	if (error == 0) {
324 		*lenp = memseg.len;
325 		n = strlcpy(namebuf, memseg.name, bufsize);
326 		if (n >= bufsize) {
327 			errno = ENAMETOOLONG;
328 			error = -1;
329 		}
330 	}
331 	return (error);
332 }
333 
334 static int
335 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
336 {
337 	char *ptr;
338 	int error, flags;
339 
340 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
341 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
342 	if (error)
343 		return (error);
344 
345 	flags = MAP_SHARED | MAP_FIXED;
346 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
347 		flags |= MAP_NOCORE;
348 
349 	/* mmap into the process address space on the host */
350 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
351 	if (ptr == MAP_FAILED)
352 		return (-1);
353 
354 	return (0);
355 }
356 
357 int
358 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
359 {
360 	size_t objsize, len;
361 	vm_paddr_t gpa;
362 	char *baseaddr, *ptr;
363 	int error, flags;
364 
365 	assert(vms == VM_MMAP_ALL);
366 
367 	/*
368 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
369 	 * create another 'highmem' segment above 4GB for the remainder.
370 	 */
371 	if (memsize > ctx->lowmem_limit) {
372 		ctx->lowmem = ctx->lowmem_limit;
373 		ctx->highmem = memsize - ctx->lowmem_limit;
374 		objsize = 4*GB + ctx->highmem;
375 	} else {
376 		ctx->lowmem = memsize;
377 		ctx->highmem = 0;
378 		objsize = ctx->lowmem;
379 	}
380 
381 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
382 	if (error)
383 		return (error);
384 
385 	/*
386 	 * Stake out a contiguous region covering the guest physical memory
387 	 * and the adjoining guard regions.
388 	 */
389 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
390 	flags = MAP_PRIVATE | MAP_ANON | MAP_NOCORE | MAP_ALIGNED_SUPER;
391 	ptr = mmap(NULL, len, PROT_NONE, flags, -1, 0);
392 	if (ptr == MAP_FAILED)
393 		return (-1);
394 
395 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
396 	if (ctx->highmem > 0) {
397 		gpa = 4*GB;
398 		len = ctx->highmem;
399 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
400 		if (error)
401 			return (error);
402 	}
403 
404 	if (ctx->lowmem > 0) {
405 		gpa = 0;
406 		len = ctx->lowmem;
407 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
408 		if (error)
409 			return (error);
410 	}
411 
412 	ctx->baseaddr = baseaddr;
413 
414 	return (0);
415 }
416 
417 /*
418  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
419  * the lowmem or highmem regions.
420  *
421  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
422  * The instruction emulation code depends on this behavior.
423  */
424 void *
425 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
426 {
427 
428 	if (ctx->lowmem > 0) {
429 		if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
430 		    gaddr + len <= ctx->lowmem)
431 			return (ctx->baseaddr + gaddr);
432 	}
433 
434 	if (ctx->highmem > 0) {
435                 if (gaddr >= 4*GB) {
436 			if (gaddr < 4*GB + ctx->highmem &&
437 			    len <= ctx->highmem &&
438 			    gaddr + len <= 4*GB + ctx->highmem)
439 				return (ctx->baseaddr + gaddr);
440 		}
441 	}
442 
443 	return (NULL);
444 }
445 
446 size_t
447 vm_get_lowmem_size(struct vmctx *ctx)
448 {
449 
450 	return (ctx->lowmem);
451 }
452 
453 size_t
454 vm_get_highmem_size(struct vmctx *ctx)
455 {
456 
457 	return (ctx->highmem);
458 }
459 
460 void *
461 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
462 {
463 	char pathname[MAXPATHLEN];
464 	size_t len2;
465 	char *base, *ptr;
466 	int fd, error, flags;
467 
468 	fd = -1;
469 	ptr = MAP_FAILED;
470 	if (name == NULL || strlen(name) == 0) {
471 		errno = EINVAL;
472 		goto done;
473 	}
474 
475 	error = vm_alloc_memseg(ctx, segid, len, name);
476 	if (error)
477 		goto done;
478 
479 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
480 	strlcat(pathname, ctx->name, sizeof(pathname));
481 	strlcat(pathname, ".", sizeof(pathname));
482 	strlcat(pathname, name, sizeof(pathname));
483 
484 	fd = open(pathname, O_RDWR);
485 	if (fd < 0)
486 		goto done;
487 
488 	/*
489 	 * Stake out a contiguous region covering the device memory and the
490 	 * adjoining guard regions.
491 	 */
492 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
493 	flags = MAP_PRIVATE | MAP_ANON | MAP_NOCORE | MAP_ALIGNED_SUPER;
494 	base = mmap(NULL, len2, PROT_NONE, flags, -1, 0);
495 	if (base == MAP_FAILED)
496 		goto done;
497 
498 	flags = MAP_SHARED | MAP_FIXED;
499 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
500 		flags |= MAP_NOCORE;
501 
502 	/* mmap the devmem region in the host address space */
503 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
504 done:
505 	if (fd >= 0)
506 		close(fd);
507 	return (ptr);
508 }
509 
510 int
511 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
512 	    uint64_t base, uint32_t limit, uint32_t access)
513 {
514 	int error;
515 	struct vm_seg_desc vmsegdesc;
516 
517 	bzero(&vmsegdesc, sizeof(vmsegdesc));
518 	vmsegdesc.cpuid = vcpu;
519 	vmsegdesc.regnum = reg;
520 	vmsegdesc.desc.base = base;
521 	vmsegdesc.desc.limit = limit;
522 	vmsegdesc.desc.access = access;
523 
524 	error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
525 	return (error);
526 }
527 
528 int
529 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
530 	    uint64_t *base, uint32_t *limit, uint32_t *access)
531 {
532 	int error;
533 	struct vm_seg_desc vmsegdesc;
534 
535 	bzero(&vmsegdesc, sizeof(vmsegdesc));
536 	vmsegdesc.cpuid = vcpu;
537 	vmsegdesc.regnum = reg;
538 
539 	error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
540 	if (error == 0) {
541 		*base = vmsegdesc.desc.base;
542 		*limit = vmsegdesc.desc.limit;
543 		*access = vmsegdesc.desc.access;
544 	}
545 	return (error);
546 }
547 
548 int
549 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
550 {
551 	int error;
552 
553 	error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
554 	    &seg_desc->access);
555 	return (error);
556 }
557 
558 int
559 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
560 {
561 	int error;
562 	struct vm_register vmreg;
563 
564 	bzero(&vmreg, sizeof(vmreg));
565 	vmreg.cpuid = vcpu;
566 	vmreg.regnum = reg;
567 	vmreg.regval = val;
568 
569 	error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
570 	return (error);
571 }
572 
573 int
574 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
575 {
576 	int error;
577 	struct vm_register vmreg;
578 
579 	bzero(&vmreg, sizeof(vmreg));
580 	vmreg.cpuid = vcpu;
581 	vmreg.regnum = reg;
582 
583 	error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
584 	*ret_val = vmreg.regval;
585 	return (error);
586 }
587 
588 int
589 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit)
590 {
591 	int error;
592 	struct vm_run vmrun;
593 
594 	bzero(&vmrun, sizeof(vmrun));
595 	vmrun.cpuid = vcpu;
596 
597 	error = ioctl(ctx->fd, VM_RUN, &vmrun);
598 	bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit));
599 	return (error);
600 }
601 
602 int
603 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
604 {
605 	struct vm_suspend vmsuspend;
606 
607 	bzero(&vmsuspend, sizeof(vmsuspend));
608 	vmsuspend.how = how;
609 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
610 }
611 
612 int
613 vm_reinit(struct vmctx *ctx)
614 {
615 
616 	return (ioctl(ctx->fd, VM_REINIT, 0));
617 }
618 
619 int
620 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
621     uint32_t errcode, int restart_instruction)
622 {
623 	struct vm_exception exc;
624 
625 	exc.cpuid = vcpu;
626 	exc.vector = vector;
627 	exc.error_code = errcode;
628 	exc.error_code_valid = errcode_valid;
629 	exc.restart_instruction = restart_instruction;
630 
631 	return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
632 }
633 
634 int
635 vm_apicid2vcpu(struct vmctx *ctx, int apicid)
636 {
637 	/*
638 	 * The apic id associated with the 'vcpu' has the same numerical value
639 	 * as the 'vcpu' itself.
640 	 */
641 	return (apicid);
642 }
643 
644 int
645 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
646 {
647 	struct vm_lapic_irq vmirq;
648 
649 	bzero(&vmirq, sizeof(vmirq));
650 	vmirq.cpuid = vcpu;
651 	vmirq.vector = vector;
652 
653 	return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
654 }
655 
656 int
657 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
658 {
659 	struct vm_lapic_irq vmirq;
660 
661 	bzero(&vmirq, sizeof(vmirq));
662 	vmirq.cpuid = vcpu;
663 	vmirq.vector = vector;
664 
665 	return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
666 }
667 
668 int
669 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
670 {
671 	struct vm_lapic_msi vmmsi;
672 
673 	bzero(&vmmsi, sizeof(vmmsi));
674 	vmmsi.addr = addr;
675 	vmmsi.msg = msg;
676 
677 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
678 }
679 
680 int
681 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
682 {
683 	struct vm_ioapic_irq ioapic_irq;
684 
685 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
686 	ioapic_irq.irq = irq;
687 
688 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
689 }
690 
691 int
692 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
693 {
694 	struct vm_ioapic_irq ioapic_irq;
695 
696 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
697 	ioapic_irq.irq = irq;
698 
699 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
700 }
701 
702 int
703 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
704 {
705 	struct vm_ioapic_irq ioapic_irq;
706 
707 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
708 	ioapic_irq.irq = irq;
709 
710 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
711 }
712 
713 int
714 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
715 {
716 
717 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
718 }
719 
720 int
721 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
722 {
723 	struct vm_isa_irq isa_irq;
724 
725 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
726 	isa_irq.atpic_irq = atpic_irq;
727 	isa_irq.ioapic_irq = ioapic_irq;
728 
729 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
730 }
731 
732 int
733 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
734 {
735 	struct vm_isa_irq isa_irq;
736 
737 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
738 	isa_irq.atpic_irq = atpic_irq;
739 	isa_irq.ioapic_irq = ioapic_irq;
740 
741 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
742 }
743 
744 int
745 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
746 {
747 	struct vm_isa_irq isa_irq;
748 
749 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
750 	isa_irq.atpic_irq = atpic_irq;
751 	isa_irq.ioapic_irq = ioapic_irq;
752 
753 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
754 }
755 
756 int
757 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
758     enum vm_intr_trigger trigger)
759 {
760 	struct vm_isa_irq_trigger isa_irq_trigger;
761 
762 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
763 	isa_irq_trigger.atpic_irq = atpic_irq;
764 	isa_irq_trigger.trigger = trigger;
765 
766 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
767 }
768 
769 int
770 vm_inject_nmi(struct vmctx *ctx, int vcpu)
771 {
772 	struct vm_nmi vmnmi;
773 
774 	bzero(&vmnmi, sizeof(vmnmi));
775 	vmnmi.cpuid = vcpu;
776 
777 	return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
778 }
779 
780 static struct {
781 	const char	*name;
782 	int		type;
783 } capstrmap[] = {
784 	{ "hlt_exit",		VM_CAP_HALT_EXIT },
785 	{ "mtrap_exit",		VM_CAP_MTRAP_EXIT },
786 	{ "pause_exit",		VM_CAP_PAUSE_EXIT },
787 	{ "unrestricted_guest",	VM_CAP_UNRESTRICTED_GUEST },
788 	{ "enable_invpcid",	VM_CAP_ENABLE_INVPCID },
789 	{ 0 }
790 };
791 
792 int
793 vm_capability_name2type(const char *capname)
794 {
795 	int i;
796 
797 	for (i = 0; capstrmap[i].name != NULL && capname != NULL; i++) {
798 		if (strcmp(capstrmap[i].name, capname) == 0)
799 			return (capstrmap[i].type);
800 	}
801 
802 	return (-1);
803 }
804 
805 const char *
806 vm_capability_type2name(int type)
807 {
808 	int i;
809 
810 	for (i = 0; capstrmap[i].name != NULL; i++) {
811 		if (capstrmap[i].type == type)
812 			return (capstrmap[i].name);
813 	}
814 
815 	return (NULL);
816 }
817 
818 int
819 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
820 		  int *retval)
821 {
822 	int error;
823 	struct vm_capability vmcap;
824 
825 	bzero(&vmcap, sizeof(vmcap));
826 	vmcap.cpuid = vcpu;
827 	vmcap.captype = cap;
828 
829 	error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
830 	*retval = vmcap.capval;
831 	return (error);
832 }
833 
834 int
835 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
836 {
837 	struct vm_capability vmcap;
838 
839 	bzero(&vmcap, sizeof(vmcap));
840 	vmcap.cpuid = vcpu;
841 	vmcap.captype = cap;
842 	vmcap.capval = val;
843 
844 	return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
845 }
846 
847 int
848 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
849 {
850 	struct vm_pptdev pptdev;
851 
852 	bzero(&pptdev, sizeof(pptdev));
853 	pptdev.bus = bus;
854 	pptdev.slot = slot;
855 	pptdev.func = func;
856 
857 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
858 }
859 
860 int
861 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
862 {
863 	struct vm_pptdev pptdev;
864 
865 	bzero(&pptdev, sizeof(pptdev));
866 	pptdev.bus = bus;
867 	pptdev.slot = slot;
868 	pptdev.func = func;
869 
870 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
871 }
872 
873 int
874 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
875 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
876 {
877 	struct vm_pptdev_mmio pptmmio;
878 
879 	bzero(&pptmmio, sizeof(pptmmio));
880 	pptmmio.bus = bus;
881 	pptmmio.slot = slot;
882 	pptmmio.func = func;
883 	pptmmio.gpa = gpa;
884 	pptmmio.len = len;
885 	pptmmio.hpa = hpa;
886 
887 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
888 }
889 
890 int
891 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
892     uint64_t addr, uint64_t msg, int numvec)
893 {
894 	struct vm_pptdev_msi pptmsi;
895 
896 	bzero(&pptmsi, sizeof(pptmsi));
897 	pptmsi.vcpu = vcpu;
898 	pptmsi.bus = bus;
899 	pptmsi.slot = slot;
900 	pptmsi.func = func;
901 	pptmsi.msg = msg;
902 	pptmsi.addr = addr;
903 	pptmsi.numvec = numvec;
904 
905 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
906 }
907 
908 int
909 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
910     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
911 {
912 	struct vm_pptdev_msix pptmsix;
913 
914 	bzero(&pptmsix, sizeof(pptmsix));
915 	pptmsix.vcpu = vcpu;
916 	pptmsix.bus = bus;
917 	pptmsix.slot = slot;
918 	pptmsix.func = func;
919 	pptmsix.idx = idx;
920 	pptmsix.msg = msg;
921 	pptmsix.addr = addr;
922 	pptmsix.vector_control = vector_control;
923 
924 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
925 }
926 
927 uint64_t *
928 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
929 	     int *ret_entries)
930 {
931 	int error;
932 
933 	static struct vm_stats vmstats;
934 
935 	vmstats.cpuid = vcpu;
936 
937 	error = ioctl(ctx->fd, VM_STATS, &vmstats);
938 	if (error == 0) {
939 		if (ret_entries)
940 			*ret_entries = vmstats.num_entries;
941 		if (ret_tv)
942 			*ret_tv = vmstats.tv;
943 		return (vmstats.statbuf);
944 	} else
945 		return (NULL);
946 }
947 
948 const char *
949 vm_get_stat_desc(struct vmctx *ctx, int index)
950 {
951 	static struct vm_stat_desc statdesc;
952 
953 	statdesc.index = index;
954 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
955 		return (statdesc.desc);
956 	else
957 		return (NULL);
958 }
959 
960 int
961 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
962 {
963 	int error;
964 	struct vm_x2apic x2apic;
965 
966 	bzero(&x2apic, sizeof(x2apic));
967 	x2apic.cpuid = vcpu;
968 
969 	error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
970 	*state = x2apic.state;
971 	return (error);
972 }
973 
974 int
975 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
976 {
977 	int error;
978 	struct vm_x2apic x2apic;
979 
980 	bzero(&x2apic, sizeof(x2apic));
981 	x2apic.cpuid = vcpu;
982 	x2apic.state = state;
983 
984 	error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
985 
986 	return (error);
987 }
988 
989 /*
990  * From Intel Vol 3a:
991  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
992  */
993 int
994 vcpu_reset(struct vmctx *vmctx, int vcpu)
995 {
996 	int error;
997 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
998 	uint32_t desc_access, desc_limit;
999 	uint16_t sel;
1000 
1001 	zero = 0;
1002 
1003 	rflags = 0x2;
1004 	error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1005 	if (error)
1006 		goto done;
1007 
1008 	rip = 0xfff0;
1009 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1010 		goto done;
1011 
1012 	cr0 = CR0_NE;
1013 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1014 		goto done;
1015 
1016 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1017 		goto done;
1018 
1019 	cr4 = 0;
1020 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1021 		goto done;
1022 
1023 	/*
1024 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1025 	 */
1026 	desc_base = 0xffff0000;
1027 	desc_limit = 0xffff;
1028 	desc_access = 0x0093;
1029 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1030 			    desc_base, desc_limit, desc_access);
1031 	if (error)
1032 		goto done;
1033 
1034 	sel = 0xf000;
1035 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1036 		goto done;
1037 
1038 	/*
1039 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1040 	 */
1041 	desc_base = 0;
1042 	desc_limit = 0xffff;
1043 	desc_access = 0x0093;
1044 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1045 			    desc_base, desc_limit, desc_access);
1046 	if (error)
1047 		goto done;
1048 
1049 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1050 			    desc_base, desc_limit, desc_access);
1051 	if (error)
1052 		goto done;
1053 
1054 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1055 			    desc_base, desc_limit, desc_access);
1056 	if (error)
1057 		goto done;
1058 
1059 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1060 			    desc_base, desc_limit, desc_access);
1061 	if (error)
1062 		goto done;
1063 
1064 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1065 			    desc_base, desc_limit, desc_access);
1066 	if (error)
1067 		goto done;
1068 
1069 	sel = 0;
1070 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1071 		goto done;
1072 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1073 		goto done;
1074 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1075 		goto done;
1076 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1077 		goto done;
1078 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1079 		goto done;
1080 
1081 	/* General purpose registers */
1082 	rdx = 0xf00;
1083 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1084 		goto done;
1085 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1086 		goto done;
1087 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1088 		goto done;
1089 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1090 		goto done;
1091 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1092 		goto done;
1093 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1094 		goto done;
1095 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1096 		goto done;
1097 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1098 		goto done;
1099 
1100 	/* GDTR, IDTR */
1101 	desc_base = 0;
1102 	desc_limit = 0xffff;
1103 	desc_access = 0;
1104 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1105 			    desc_base, desc_limit, desc_access);
1106 	if (error != 0)
1107 		goto done;
1108 
1109 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1110 			    desc_base, desc_limit, desc_access);
1111 	if (error != 0)
1112 		goto done;
1113 
1114 	/* TR */
1115 	desc_base = 0;
1116 	desc_limit = 0xffff;
1117 	desc_access = 0x0000008b;
1118 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1119 	if (error)
1120 		goto done;
1121 
1122 	sel = 0;
1123 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1124 		goto done;
1125 
1126 	/* LDTR */
1127 	desc_base = 0;
1128 	desc_limit = 0xffff;
1129 	desc_access = 0x00000082;
1130 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1131 			    desc_limit, desc_access);
1132 	if (error)
1133 		goto done;
1134 
1135 	sel = 0;
1136 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1137 		goto done;
1138 
1139 	/* XXX cr2, debug registers */
1140 
1141 	error = 0;
1142 done:
1143 	return (error);
1144 }
1145 
1146 int
1147 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1148 {
1149 	int error, i;
1150 	struct vm_gpa_pte gpapte;
1151 
1152 	bzero(&gpapte, sizeof(gpapte));
1153 	gpapte.gpa = gpa;
1154 
1155 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1156 
1157 	if (error == 0) {
1158 		*num = gpapte.ptenum;
1159 		for (i = 0; i < gpapte.ptenum; i++)
1160 			pte[i] = gpapte.pte[i];
1161 	}
1162 
1163 	return (error);
1164 }
1165 
1166 int
1167 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1168 {
1169 	int error;
1170 	struct vm_hpet_cap cap;
1171 
1172 	bzero(&cap, sizeof(struct vm_hpet_cap));
1173 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1174 	if (capabilities != NULL)
1175 		*capabilities = cap.capabilities;
1176 	return (error);
1177 }
1178 
1179 int
1180 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1181     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1182 {
1183 	struct vm_gla2gpa gg;
1184 	int error;
1185 
1186 	bzero(&gg, sizeof(struct vm_gla2gpa));
1187 	gg.vcpuid = vcpu;
1188 	gg.prot = prot;
1189 	gg.gla = gla;
1190 	gg.paging = *paging;
1191 
1192 	error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1193 	if (error == 0) {
1194 		*fault = gg.fault;
1195 		*gpa = gg.gpa;
1196 	}
1197 	return (error);
1198 }
1199 
1200 #ifndef min
1201 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
1202 #endif
1203 
1204 int
1205 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1206     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1207     int *fault)
1208 {
1209 	void *va;
1210 	uint64_t gpa;
1211 	int error, i, n, off;
1212 
1213 	for (i = 0; i < iovcnt; i++) {
1214 		iov[i].iov_base = 0;
1215 		iov[i].iov_len = 0;
1216 	}
1217 
1218 	while (len) {
1219 		assert(iovcnt > 0);
1220 		error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1221 		if (error || *fault)
1222 			return (error);
1223 
1224 		off = gpa & PAGE_MASK;
1225 		n = min(len, PAGE_SIZE - off);
1226 
1227 		va = vm_map_gpa(ctx, gpa, n);
1228 		if (va == NULL)
1229 			return (EFAULT);
1230 
1231 		iov->iov_base = va;
1232 		iov->iov_len = n;
1233 		iov++;
1234 		iovcnt--;
1235 
1236 		gla += n;
1237 		len -= n;
1238 	}
1239 	return (0);
1240 }
1241 
1242 void
1243 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt)
1244 {
1245 
1246 	return;
1247 }
1248 
1249 void
1250 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len)
1251 {
1252 	const char *src;
1253 	char *dst;
1254 	size_t n;
1255 
1256 	dst = vp;
1257 	while (len) {
1258 		assert(iov->iov_len);
1259 		n = min(len, iov->iov_len);
1260 		src = iov->iov_base;
1261 		bcopy(src, dst, n);
1262 
1263 		iov++;
1264 		dst += n;
1265 		len -= n;
1266 	}
1267 }
1268 
1269 void
1270 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov,
1271     size_t len)
1272 {
1273 	const char *src;
1274 	char *dst;
1275 	size_t n;
1276 
1277 	src = vp;
1278 	while (len) {
1279 		assert(iov->iov_len);
1280 		n = min(len, iov->iov_len);
1281 		dst = iov->iov_base;
1282 		bcopy(src, dst, n);
1283 
1284 		iov++;
1285 		src += n;
1286 		len -= n;
1287 	}
1288 }
1289 
1290 static int
1291 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1292 {
1293 	struct vm_cpuset vm_cpuset;
1294 	int error;
1295 
1296 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1297 	vm_cpuset.which = which;
1298 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1299 	vm_cpuset.cpus = cpus;
1300 
1301 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1302 	return (error);
1303 }
1304 
1305 int
1306 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1307 {
1308 
1309 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1310 }
1311 
1312 int
1313 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1314 {
1315 
1316 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1317 }
1318 
1319 int
1320 vm_activate_cpu(struct vmctx *ctx, int vcpu)
1321 {
1322 	struct vm_activate_cpu ac;
1323 	int error;
1324 
1325 	bzero(&ac, sizeof(struct vm_activate_cpu));
1326 	ac.vcpuid = vcpu;
1327 	error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1328 	return (error);
1329 }
1330 
1331 int
1332 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1333 {
1334 	struct vm_intinfo vmii;
1335 	int error;
1336 
1337 	bzero(&vmii, sizeof(struct vm_intinfo));
1338 	vmii.vcpuid = vcpu;
1339 	error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1340 	if (error == 0) {
1341 		*info1 = vmii.info1;
1342 		*info2 = vmii.info2;
1343 	}
1344 	return (error);
1345 }
1346 
1347 int
1348 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1349 {
1350 	struct vm_intinfo vmii;
1351 	int error;
1352 
1353 	bzero(&vmii, sizeof(struct vm_intinfo));
1354 	vmii.vcpuid = vcpu;
1355 	vmii.info1 = info1;
1356 	error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1357 	return (error);
1358 }
1359 
1360 int
1361 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1362 {
1363 	struct vm_rtc_data rtcdata;
1364 	int error;
1365 
1366 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1367 	rtcdata.offset = offset;
1368 	rtcdata.value = value;
1369 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1370 	return (error);
1371 }
1372 
1373 int
1374 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1375 {
1376 	struct vm_rtc_data rtcdata;
1377 	int error;
1378 
1379 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1380 	rtcdata.offset = offset;
1381 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1382 	if (error == 0)
1383 		*retval = rtcdata.value;
1384 	return (error);
1385 }
1386 
1387 int
1388 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1389 {
1390 	struct vm_rtc_time rtctime;
1391 	int error;
1392 
1393 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1394 	rtctime.secs = secs;
1395 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1396 	return (error);
1397 }
1398 
1399 int
1400 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1401 {
1402 	struct vm_rtc_time rtctime;
1403 	int error;
1404 
1405 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1406 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1407 	if (error == 0)
1408 		*secs = rtctime.secs;
1409 	return (error);
1410 }
1411 
1412 int
1413 vm_restart_instruction(void *arg, int vcpu)
1414 {
1415 	struct vmctx *ctx = arg;
1416 
1417 	return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1418 }
1419