xref: /freebsd/lib/libvmmapi/vmmapi.c (revision c9fdd4f3cc18c03683de85318ba8d318f96b58c4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/capsicum.h>
36 #include <sys/sysctl.h>
37 #include <sys/ioctl.h>
38 #include <sys/linker.h>
39 #include <sys/mman.h>
40 #include <sys/module.h>
41 #include <sys/_iovec.h>
42 #include <sys/cpuset.h>
43 
44 #include <capsicum_helpers.h>
45 #include <errno.h>
46 #include <stdbool.h>
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <assert.h>
50 #include <string.h>
51 #include <fcntl.h>
52 #include <unistd.h>
53 
54 #include <libutil.h>
55 
56 #include <vm/vm.h>
57 #include <machine/vmm.h>
58 #include <machine/vmm_dev.h>
59 #include <machine/vmm_snapshot.h>
60 
61 #include "vmmapi.h"
62 #include "internal.h"
63 
64 #define	MB	(1024 * 1024UL)
65 #define	GB	(1024 * 1024 * 1024UL)
66 
67 /*
68  * Size of the guard region before and after the virtual address space
69  * mapping the guest physical memory. This must be a multiple of the
70  * superpage size for performance reasons.
71  */
72 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
73 
74 #define	PROT_RW		(PROT_READ | PROT_WRITE)
75 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
76 
77 struct vmctx {
78 	int	fd;
79 	uint32_t lowmem_limit;
80 	int	memflags;
81 	size_t	lowmem;
82 	size_t	highmem;
83 	char	*baseaddr;
84 	char	*name;
85 };
86 
87 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
88 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
89 
90 static int
91 vm_device_open(const char *name)
92 {
93 	int fd, len;
94 	char *vmfile;
95 
96 	len = strlen("/dev/vmm/") + strlen(name) + 1;
97 	vmfile = malloc(len);
98 	assert(vmfile != NULL);
99 	snprintf(vmfile, len, "/dev/vmm/%s", name);
100 
101 	/* Open the device file */
102 	fd = open(vmfile, O_RDWR, 0);
103 
104 	free(vmfile);
105 	return (fd);
106 }
107 
108 int
109 vm_create(const char *name)
110 {
111 	/* Try to load vmm(4) module before creating a guest. */
112 	if (modfind("vmm") < 0)
113 		kldload("vmm");
114 	return (CREATE(name));
115 }
116 
117 struct vmctx *
118 vm_open(const char *name)
119 {
120 	struct vmctx *vm;
121 	int saved_errno;
122 
123 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
124 	assert(vm != NULL);
125 
126 	vm->fd = -1;
127 	vm->memflags = 0;
128 	vm->lowmem_limit = 3 * GB;
129 	vm->name = (char *)(vm + 1);
130 	strcpy(vm->name, name);
131 
132 	if ((vm->fd = vm_device_open(vm->name)) < 0)
133 		goto err;
134 
135 	return (vm);
136 err:
137 	saved_errno = errno;
138 	free(vm);
139 	errno = saved_errno;
140 	return (NULL);
141 }
142 
143 void
144 vm_close(struct vmctx *vm)
145 {
146 	assert(vm != NULL);
147 
148 	close(vm->fd);
149 	free(vm);
150 }
151 
152 void
153 vm_destroy(struct vmctx *vm)
154 {
155 	assert(vm != NULL);
156 
157 	if (vm->fd >= 0)
158 		close(vm->fd);
159 	DESTROY(vm->name);
160 
161 	free(vm);
162 }
163 
164 struct vcpu *
165 vm_vcpu_open(struct vmctx *ctx, int vcpuid)
166 {
167 	struct vcpu *vcpu;
168 
169 	vcpu = malloc(sizeof(*vcpu));
170 	vcpu->ctx = ctx;
171 	vcpu->vcpuid = vcpuid;
172 	return (vcpu);
173 }
174 
175 void
176 vm_vcpu_close(struct vcpu *vcpu)
177 {
178 	free(vcpu);
179 }
180 
181 int
182 vcpu_id(struct vcpu *vcpu)
183 {
184 	return (vcpu->vcpuid);
185 }
186 
187 int
188 vm_parse_memsize(const char *opt, size_t *ret_memsize)
189 {
190 	char *endptr;
191 	size_t optval;
192 	int error;
193 
194 	optval = strtoul(opt, &endptr, 0);
195 	if (*opt != '\0' && *endptr == '\0') {
196 		/*
197 		 * For the sake of backward compatibility if the memory size
198 		 * specified on the command line is less than a megabyte then
199 		 * it is interpreted as being in units of MB.
200 		 */
201 		if (optval < MB)
202 			optval *= MB;
203 		*ret_memsize = optval;
204 		error = 0;
205 	} else
206 		error = expand_number(opt, ret_memsize);
207 
208 	return (error);
209 }
210 
211 uint32_t
212 vm_get_lowmem_limit(struct vmctx *ctx)
213 {
214 
215 	return (ctx->lowmem_limit);
216 }
217 
218 void
219 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
220 {
221 
222 	ctx->lowmem_limit = limit;
223 }
224 
225 void
226 vm_set_memflags(struct vmctx *ctx, int flags)
227 {
228 
229 	ctx->memflags = flags;
230 }
231 
232 int
233 vm_get_memflags(struct vmctx *ctx)
234 {
235 
236 	return (ctx->memflags);
237 }
238 
239 /*
240  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
241  */
242 int
243 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
244     size_t len, int prot)
245 {
246 	struct vm_memmap memmap;
247 	int error, flags;
248 
249 	memmap.gpa = gpa;
250 	memmap.segid = segid;
251 	memmap.segoff = off;
252 	memmap.len = len;
253 	memmap.prot = prot;
254 	memmap.flags = 0;
255 
256 	if (ctx->memflags & VM_MEM_F_WIRED)
257 		memmap.flags |= VM_MEMMAP_F_WIRED;
258 
259 	/*
260 	 * If this mapping already exists then don't create it again. This
261 	 * is the common case for SYSMEM mappings created by bhyveload(8).
262 	 */
263 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
264 	if (error == 0 && gpa == memmap.gpa) {
265 		if (segid != memmap.segid || off != memmap.segoff ||
266 		    prot != memmap.prot || flags != memmap.flags) {
267 			errno = EEXIST;
268 			return (-1);
269 		} else {
270 			return (0);
271 		}
272 	}
273 
274 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
275 	return (error);
276 }
277 
278 int
279 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr,
280     size_t *lowmem_size, size_t *highmem_size)
281 {
282 
283 	*guest_baseaddr = ctx->baseaddr;
284 	*lowmem_size = ctx->lowmem;
285 	*highmem_size = ctx->highmem;
286 	return (0);
287 }
288 
289 int
290 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
291 {
292 	struct vm_munmap munmap;
293 	int error;
294 
295 	munmap.gpa = gpa;
296 	munmap.len = len;
297 
298 	error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
299 	return (error);
300 }
301 
302 int
303 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
304     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
305 {
306 	struct vm_memmap memmap;
307 	int error;
308 
309 	bzero(&memmap, sizeof(struct vm_memmap));
310 	memmap.gpa = *gpa;
311 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
312 	if (error == 0) {
313 		*gpa = memmap.gpa;
314 		*segid = memmap.segid;
315 		*segoff = memmap.segoff;
316 		*len = memmap.len;
317 		*prot = memmap.prot;
318 		*flags = memmap.flags;
319 	}
320 	return (error);
321 }
322 
323 /*
324  * Return 0 if the segments are identical and non-zero otherwise.
325  *
326  * This is slightly complicated by the fact that only device memory segments
327  * are named.
328  */
329 static int
330 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
331 {
332 
333 	if (len == len2) {
334 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
335 			return (0);
336 	}
337 	return (-1);
338 }
339 
340 static int
341 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
342 {
343 	struct vm_memseg memseg;
344 	size_t n;
345 	int error;
346 
347 	/*
348 	 * If the memory segment has already been created then just return.
349 	 * This is the usual case for the SYSMEM segment created by userspace
350 	 * loaders like bhyveload(8).
351 	 */
352 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
353 	    sizeof(memseg.name));
354 	if (error)
355 		return (error);
356 
357 	if (memseg.len != 0) {
358 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
359 			errno = EINVAL;
360 			return (-1);
361 		} else {
362 			return (0);
363 		}
364 	}
365 
366 	bzero(&memseg, sizeof(struct vm_memseg));
367 	memseg.segid = segid;
368 	memseg.len = len;
369 	if (name != NULL) {
370 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
371 		if (n >= sizeof(memseg.name)) {
372 			errno = ENAMETOOLONG;
373 			return (-1);
374 		}
375 	}
376 
377 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
378 	return (error);
379 }
380 
381 int
382 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
383     size_t bufsize)
384 {
385 	struct vm_memseg memseg;
386 	size_t n;
387 	int error;
388 
389 	memseg.segid = segid;
390 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
391 	if (error == 0) {
392 		*lenp = memseg.len;
393 		n = strlcpy(namebuf, memseg.name, bufsize);
394 		if (n >= bufsize) {
395 			errno = ENAMETOOLONG;
396 			error = -1;
397 		}
398 	}
399 	return (error);
400 }
401 
402 static int
403 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
404 {
405 	char *ptr;
406 	int error, flags;
407 
408 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
409 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
410 	if (error)
411 		return (error);
412 
413 	flags = MAP_SHARED | MAP_FIXED;
414 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
415 		flags |= MAP_NOCORE;
416 
417 	/* mmap into the process address space on the host */
418 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
419 	if (ptr == MAP_FAILED)
420 		return (-1);
421 
422 	return (0);
423 }
424 
425 int
426 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
427 {
428 	size_t objsize, len;
429 	vm_paddr_t gpa;
430 	char *baseaddr, *ptr;
431 	int error;
432 
433 	assert(vms == VM_MMAP_ALL);
434 
435 	/*
436 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
437 	 * create another 'highmem' segment above 4GB for the remainder.
438 	 */
439 	if (memsize > ctx->lowmem_limit) {
440 		ctx->lowmem = ctx->lowmem_limit;
441 		ctx->highmem = memsize - ctx->lowmem_limit;
442 		objsize = 4*GB + ctx->highmem;
443 	} else {
444 		ctx->lowmem = memsize;
445 		ctx->highmem = 0;
446 		objsize = ctx->lowmem;
447 	}
448 
449 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
450 	if (error)
451 		return (error);
452 
453 	/*
454 	 * Stake out a contiguous region covering the guest physical memory
455 	 * and the adjoining guard regions.
456 	 */
457 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
458 	ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
459 	if (ptr == MAP_FAILED)
460 		return (-1);
461 
462 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
463 	if (ctx->highmem > 0) {
464 		gpa = 4*GB;
465 		len = ctx->highmem;
466 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
467 		if (error)
468 			return (error);
469 	}
470 
471 	if (ctx->lowmem > 0) {
472 		gpa = 0;
473 		len = ctx->lowmem;
474 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
475 		if (error)
476 			return (error);
477 	}
478 
479 	ctx->baseaddr = baseaddr;
480 
481 	return (0);
482 }
483 
484 /*
485  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
486  * the lowmem or highmem regions.
487  *
488  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
489  * The instruction emulation code depends on this behavior.
490  */
491 void *
492 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
493 {
494 
495 	if (ctx->lowmem > 0) {
496 		if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
497 		    gaddr + len <= ctx->lowmem)
498 			return (ctx->baseaddr + gaddr);
499 	}
500 
501 	if (ctx->highmem > 0) {
502                 if (gaddr >= 4*GB) {
503 			if (gaddr < 4*GB + ctx->highmem &&
504 			    len <= ctx->highmem &&
505 			    gaddr + len <= 4*GB + ctx->highmem)
506 				return (ctx->baseaddr + gaddr);
507 		}
508 	}
509 
510 	return (NULL);
511 }
512 
513 vm_paddr_t
514 vm_rev_map_gpa(struct vmctx *ctx, void *addr)
515 {
516 	vm_paddr_t offaddr;
517 
518 	offaddr = (char *)addr - ctx->baseaddr;
519 
520 	if (ctx->lowmem > 0)
521 		if (offaddr <= ctx->lowmem)
522 			return (offaddr);
523 
524 	if (ctx->highmem > 0)
525 		if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem)
526 			return (offaddr);
527 
528 	return ((vm_paddr_t)-1);
529 }
530 
531 const char *
532 vm_get_name(struct vmctx *ctx)
533 {
534 
535 	return (ctx->name);
536 }
537 
538 size_t
539 vm_get_lowmem_size(struct vmctx *ctx)
540 {
541 
542 	return (ctx->lowmem);
543 }
544 
545 size_t
546 vm_get_highmem_size(struct vmctx *ctx)
547 {
548 
549 	return (ctx->highmem);
550 }
551 
552 void *
553 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
554 {
555 	char pathname[MAXPATHLEN];
556 	size_t len2;
557 	char *base, *ptr;
558 	int fd, error, flags;
559 
560 	fd = -1;
561 	ptr = MAP_FAILED;
562 	if (name == NULL || strlen(name) == 0) {
563 		errno = EINVAL;
564 		goto done;
565 	}
566 
567 	error = vm_alloc_memseg(ctx, segid, len, name);
568 	if (error)
569 		goto done;
570 
571 	strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
572 	strlcat(pathname, ctx->name, sizeof(pathname));
573 	strlcat(pathname, ".", sizeof(pathname));
574 	strlcat(pathname, name, sizeof(pathname));
575 
576 	fd = open(pathname, O_RDWR);
577 	if (fd < 0)
578 		goto done;
579 
580 	/*
581 	 * Stake out a contiguous region covering the device memory and the
582 	 * adjoining guard regions.
583 	 */
584 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
585 	base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
586 	    0);
587 	if (base == MAP_FAILED)
588 		goto done;
589 
590 	flags = MAP_SHARED | MAP_FIXED;
591 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
592 		flags |= MAP_NOCORE;
593 
594 	/* mmap the devmem region in the host address space */
595 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
596 done:
597 	if (fd >= 0)
598 		close(fd);
599 	return (ptr);
600 }
601 
602 static int
603 vcpu_ioctl(struct vcpu *vcpu, u_long cmd, void *arg)
604 {
605 	/*
606 	 * XXX: fragile, handle with care
607 	 * Assumes that the first field of the ioctl data
608 	 * is the vcpuid.
609 	 */
610 	*(int *)arg = vcpu->vcpuid;
611 	return (ioctl(vcpu->ctx->fd, cmd, arg));
612 }
613 
614 int
615 vm_set_desc(struct vcpu *vcpu, int reg,
616 	    uint64_t base, uint32_t limit, uint32_t access)
617 {
618 	int error;
619 	struct vm_seg_desc vmsegdesc;
620 
621 	bzero(&vmsegdesc, sizeof(vmsegdesc));
622 	vmsegdesc.regnum = reg;
623 	vmsegdesc.desc.base = base;
624 	vmsegdesc.desc.limit = limit;
625 	vmsegdesc.desc.access = access;
626 
627 	error = vcpu_ioctl(vcpu, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
628 	return (error);
629 }
630 
631 int
632 vm_get_desc(struct vcpu *vcpu, int reg, uint64_t *base, uint32_t *limit,
633     uint32_t *access)
634 {
635 	int error;
636 	struct vm_seg_desc vmsegdesc;
637 
638 	bzero(&vmsegdesc, sizeof(vmsegdesc));
639 	vmsegdesc.regnum = reg;
640 
641 	error = vcpu_ioctl(vcpu, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
642 	if (error == 0) {
643 		*base = vmsegdesc.desc.base;
644 		*limit = vmsegdesc.desc.limit;
645 		*access = vmsegdesc.desc.access;
646 	}
647 	return (error);
648 }
649 
650 int
651 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *seg_desc)
652 {
653 	int error;
654 
655 	error = vm_get_desc(vcpu, reg, &seg_desc->base, &seg_desc->limit,
656 	    &seg_desc->access);
657 	return (error);
658 }
659 
660 int
661 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
662 {
663 	int error;
664 	struct vm_register vmreg;
665 
666 	bzero(&vmreg, sizeof(vmreg));
667 	vmreg.regnum = reg;
668 	vmreg.regval = val;
669 
670 	error = vcpu_ioctl(vcpu, VM_SET_REGISTER, &vmreg);
671 	return (error);
672 }
673 
674 int
675 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *ret_val)
676 {
677 	int error;
678 	struct vm_register vmreg;
679 
680 	bzero(&vmreg, sizeof(vmreg));
681 	vmreg.regnum = reg;
682 
683 	error = vcpu_ioctl(vcpu, VM_GET_REGISTER, &vmreg);
684 	*ret_val = vmreg.regval;
685 	return (error);
686 }
687 
688 int
689 vm_set_register_set(struct vcpu *vcpu, unsigned int count,
690     const int *regnums, uint64_t *regvals)
691 {
692 	int error;
693 	struct vm_register_set vmregset;
694 
695 	bzero(&vmregset, sizeof(vmregset));
696 	vmregset.count = count;
697 	vmregset.regnums = regnums;
698 	vmregset.regvals = regvals;
699 
700 	error = vcpu_ioctl(vcpu, VM_SET_REGISTER_SET, &vmregset);
701 	return (error);
702 }
703 
704 int
705 vm_get_register_set(struct vcpu *vcpu, unsigned int count,
706     const int *regnums, uint64_t *regvals)
707 {
708 	int error;
709 	struct vm_register_set vmregset;
710 
711 	bzero(&vmregset, sizeof(vmregset));
712 	vmregset.count = count;
713 	vmregset.regnums = regnums;
714 	vmregset.regvals = regvals;
715 
716 	error = vcpu_ioctl(vcpu, VM_GET_REGISTER_SET, &vmregset);
717 	return (error);
718 }
719 
720 int
721 vm_run(struct vcpu *vcpu, struct vm_run *vmrun)
722 {
723 	return (vcpu_ioctl(vcpu, VM_RUN, vmrun));
724 }
725 
726 int
727 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
728 {
729 	struct vm_suspend vmsuspend;
730 
731 	bzero(&vmsuspend, sizeof(vmsuspend));
732 	vmsuspend.how = how;
733 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
734 }
735 
736 int
737 vm_reinit(struct vmctx *ctx)
738 {
739 
740 	return (ioctl(ctx->fd, VM_REINIT, 0));
741 }
742 
743 int
744 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
745     uint32_t errcode, int restart_instruction)
746 {
747 	struct vm_exception exc;
748 
749 	exc.vector = vector;
750 	exc.error_code = errcode;
751 	exc.error_code_valid = errcode_valid;
752 	exc.restart_instruction = restart_instruction;
753 
754 	return (vcpu_ioctl(vcpu, VM_INJECT_EXCEPTION, &exc));
755 }
756 
757 int
758 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid)
759 {
760 	/*
761 	 * The apic id associated with the 'vcpu' has the same numerical value
762 	 * as the 'vcpu' itself.
763 	 */
764 	return (apicid);
765 }
766 
767 int
768 vm_lapic_irq(struct vcpu *vcpu, int vector)
769 {
770 	struct vm_lapic_irq vmirq;
771 
772 	bzero(&vmirq, sizeof(vmirq));
773 	vmirq.vector = vector;
774 
775 	return (vcpu_ioctl(vcpu, VM_LAPIC_IRQ, &vmirq));
776 }
777 
778 int
779 vm_lapic_local_irq(struct vcpu *vcpu, int vector)
780 {
781 	struct vm_lapic_irq vmirq;
782 
783 	bzero(&vmirq, sizeof(vmirq));
784 	vmirq.vector = vector;
785 
786 	return (vcpu_ioctl(vcpu, VM_LAPIC_LOCAL_IRQ, &vmirq));
787 }
788 
789 int
790 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
791 {
792 	struct vm_lapic_msi vmmsi;
793 
794 	bzero(&vmmsi, sizeof(vmmsi));
795 	vmmsi.addr = addr;
796 	vmmsi.msg = msg;
797 
798 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
799 }
800 
801 int
802 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
803 {
804 	struct vm_ioapic_irq ioapic_irq;
805 
806 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
807 	ioapic_irq.irq = irq;
808 
809 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
810 }
811 
812 int
813 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
814 {
815 	struct vm_ioapic_irq ioapic_irq;
816 
817 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
818 	ioapic_irq.irq = irq;
819 
820 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
821 }
822 
823 int
824 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
825 {
826 	struct vm_ioapic_irq ioapic_irq;
827 
828 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
829 	ioapic_irq.irq = irq;
830 
831 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
832 }
833 
834 int
835 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
836 {
837 
838 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
839 }
840 
841 int
842 vm_readwrite_kernemu_device(struct vcpu *vcpu, vm_paddr_t gpa,
843     bool write, int size, uint64_t *value)
844 {
845 	struct vm_readwrite_kernemu_device irp = {
846 		.access_width = fls(size) - 1,
847 		.gpa = gpa,
848 		.value = write ? *value : ~0ul,
849 	};
850 	long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
851 	int rc;
852 
853 	rc = vcpu_ioctl(vcpu, cmd, &irp);
854 	if (rc == 0 && !write)
855 		*value = irp.value;
856 	return (rc);
857 }
858 
859 int
860 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
861 {
862 	struct vm_isa_irq isa_irq;
863 
864 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
865 	isa_irq.atpic_irq = atpic_irq;
866 	isa_irq.ioapic_irq = ioapic_irq;
867 
868 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
869 }
870 
871 int
872 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
873 {
874 	struct vm_isa_irq isa_irq;
875 
876 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
877 	isa_irq.atpic_irq = atpic_irq;
878 	isa_irq.ioapic_irq = ioapic_irq;
879 
880 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
881 }
882 
883 int
884 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
885 {
886 	struct vm_isa_irq isa_irq;
887 
888 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
889 	isa_irq.atpic_irq = atpic_irq;
890 	isa_irq.ioapic_irq = ioapic_irq;
891 
892 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
893 }
894 
895 int
896 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
897     enum vm_intr_trigger trigger)
898 {
899 	struct vm_isa_irq_trigger isa_irq_trigger;
900 
901 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
902 	isa_irq_trigger.atpic_irq = atpic_irq;
903 	isa_irq_trigger.trigger = trigger;
904 
905 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
906 }
907 
908 int
909 vm_inject_nmi(struct vcpu *vcpu)
910 {
911 	struct vm_nmi vmnmi;
912 
913 	bzero(&vmnmi, sizeof(vmnmi));
914 
915 	return (vcpu_ioctl(vcpu, VM_INJECT_NMI, &vmnmi));
916 }
917 
918 static const char *capstrmap[] = {
919 	[VM_CAP_HALT_EXIT]  = "hlt_exit",
920 	[VM_CAP_MTRAP_EXIT] = "mtrap_exit",
921 	[VM_CAP_PAUSE_EXIT] = "pause_exit",
922 	[VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
923 	[VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
924 	[VM_CAP_BPT_EXIT] = "bpt_exit",
925 };
926 
927 int
928 vm_capability_name2type(const char *capname)
929 {
930 	int i;
931 
932 	for (i = 0; i < (int)nitems(capstrmap); i++) {
933 		if (strcmp(capstrmap[i], capname) == 0)
934 			return (i);
935 	}
936 
937 	return (-1);
938 }
939 
940 const char *
941 vm_capability_type2name(int type)
942 {
943 	if (type >= 0 && type < (int)nitems(capstrmap))
944 		return (capstrmap[type]);
945 
946 	return (NULL);
947 }
948 
949 int
950 vm_get_capability(struct vcpu *vcpu, enum vm_cap_type cap, int *retval)
951 {
952 	int error;
953 	struct vm_capability vmcap;
954 
955 	bzero(&vmcap, sizeof(vmcap));
956 	vmcap.captype = cap;
957 
958 	error = vcpu_ioctl(vcpu, VM_GET_CAPABILITY, &vmcap);
959 	*retval = vmcap.capval;
960 	return (error);
961 }
962 
963 int
964 vm_set_capability(struct vcpu *vcpu, enum vm_cap_type cap, int val)
965 {
966 	struct vm_capability vmcap;
967 
968 	bzero(&vmcap, sizeof(vmcap));
969 	vmcap.captype = cap;
970 	vmcap.capval = val;
971 
972 	return (vcpu_ioctl(vcpu, VM_SET_CAPABILITY, &vmcap));
973 }
974 
975 int
976 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
977 {
978 	struct vm_pptdev pptdev;
979 
980 	bzero(&pptdev, sizeof(pptdev));
981 	pptdev.bus = bus;
982 	pptdev.slot = slot;
983 	pptdev.func = func;
984 
985 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
986 }
987 
988 int
989 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
990 {
991 	struct vm_pptdev pptdev;
992 
993 	bzero(&pptdev, sizeof(pptdev));
994 	pptdev.bus = bus;
995 	pptdev.slot = slot;
996 	pptdev.func = func;
997 
998 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
999 }
1000 
1001 int
1002 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1003 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
1004 {
1005 	struct vm_pptdev_mmio pptmmio;
1006 
1007 	bzero(&pptmmio, sizeof(pptmmio));
1008 	pptmmio.bus = bus;
1009 	pptmmio.slot = slot;
1010 	pptmmio.func = func;
1011 	pptmmio.gpa = gpa;
1012 	pptmmio.len = len;
1013 	pptmmio.hpa = hpa;
1014 
1015 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
1016 }
1017 
1018 int
1019 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
1020 		     vm_paddr_t gpa, size_t len)
1021 {
1022 	struct vm_pptdev_mmio pptmmio;
1023 
1024 	bzero(&pptmmio, sizeof(pptmmio));
1025 	pptmmio.bus = bus;
1026 	pptmmio.slot = slot;
1027 	pptmmio.func = func;
1028 	pptmmio.gpa = gpa;
1029 	pptmmio.len = len;
1030 
1031 	return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
1032 }
1033 
1034 int
1035 vm_setup_pptdev_msi(struct vmctx *ctx, int bus, int slot, int func,
1036     uint64_t addr, uint64_t msg, int numvec)
1037 {
1038 	struct vm_pptdev_msi pptmsi;
1039 
1040 	bzero(&pptmsi, sizeof(pptmsi));
1041 	pptmsi.bus = bus;
1042 	pptmsi.slot = slot;
1043 	pptmsi.func = func;
1044 	pptmsi.msg = msg;
1045 	pptmsi.addr = addr;
1046 	pptmsi.numvec = numvec;
1047 
1048 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
1049 }
1050 
1051 int
1052 vm_setup_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func,
1053     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
1054 {
1055 	struct vm_pptdev_msix pptmsix;
1056 
1057 	bzero(&pptmsix, sizeof(pptmsix));
1058 	pptmsix.bus = bus;
1059 	pptmsix.slot = slot;
1060 	pptmsix.func = func;
1061 	pptmsix.idx = idx;
1062 	pptmsix.msg = msg;
1063 	pptmsix.addr = addr;
1064 	pptmsix.vector_control = vector_control;
1065 
1066 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
1067 }
1068 
1069 int
1070 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func)
1071 {
1072 	struct vm_pptdev ppt;
1073 
1074 	bzero(&ppt, sizeof(ppt));
1075 	ppt.bus = bus;
1076 	ppt.slot = slot;
1077 	ppt.func = func;
1078 
1079 	return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt);
1080 }
1081 
1082 uint64_t *
1083 vm_get_stats(struct vcpu *vcpu, struct timeval *ret_tv,
1084 	     int *ret_entries)
1085 {
1086 	static _Thread_local uint64_t *stats_buf;
1087 	static _Thread_local u_int stats_count;
1088 	uint64_t *new_stats;
1089 	struct vm_stats vmstats;
1090 	u_int count, index;
1091 	bool have_stats;
1092 
1093 	have_stats = false;
1094 	count = 0;
1095 	for (index = 0;; index += nitems(vmstats.statbuf)) {
1096 		vmstats.index = index;
1097 		if (vcpu_ioctl(vcpu, VM_STATS, &vmstats) != 0)
1098 			break;
1099 		if (stats_count < index + vmstats.num_entries) {
1100 			new_stats = realloc(stats_buf,
1101 			    (index + vmstats.num_entries) * sizeof(uint64_t));
1102 			if (new_stats == NULL) {
1103 				errno = ENOMEM;
1104 				return (NULL);
1105 			}
1106 			stats_count = index + vmstats.num_entries;
1107 			stats_buf = new_stats;
1108 		}
1109 		memcpy(stats_buf + index, vmstats.statbuf,
1110 		    vmstats.num_entries * sizeof(uint64_t));
1111 		count += vmstats.num_entries;
1112 		have_stats = true;
1113 
1114 		if (vmstats.num_entries != nitems(vmstats.statbuf))
1115 			break;
1116 	}
1117 	if (have_stats) {
1118 		if (ret_entries)
1119 			*ret_entries = count;
1120 		if (ret_tv)
1121 			*ret_tv = vmstats.tv;
1122 		return (stats_buf);
1123 	} else
1124 		return (NULL);
1125 }
1126 
1127 const char *
1128 vm_get_stat_desc(struct vmctx *ctx, int index)
1129 {
1130 	static struct vm_stat_desc statdesc;
1131 
1132 	statdesc.index = index;
1133 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
1134 		return (statdesc.desc);
1135 	else
1136 		return (NULL);
1137 }
1138 
1139 int
1140 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
1141 {
1142 	int error;
1143 	struct vm_x2apic x2apic;
1144 
1145 	bzero(&x2apic, sizeof(x2apic));
1146 
1147 	error = vcpu_ioctl(vcpu, VM_GET_X2APIC_STATE, &x2apic);
1148 	*state = x2apic.state;
1149 	return (error);
1150 }
1151 
1152 int
1153 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
1154 {
1155 	int error;
1156 	struct vm_x2apic x2apic;
1157 
1158 	bzero(&x2apic, sizeof(x2apic));
1159 	x2apic.state = state;
1160 
1161 	error = vcpu_ioctl(vcpu, VM_SET_X2APIC_STATE, &x2apic);
1162 
1163 	return (error);
1164 }
1165 
1166 /*
1167  * From Intel Vol 3a:
1168  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
1169  */
1170 int
1171 vcpu_reset(struct vcpu *vcpu)
1172 {
1173 	int error;
1174 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
1175 	uint32_t desc_access, desc_limit;
1176 	uint16_t sel;
1177 
1178 	zero = 0;
1179 
1180 	rflags = 0x2;
1181 	error = vm_set_register(vcpu, VM_REG_GUEST_RFLAGS, rflags);
1182 	if (error)
1183 		goto done;
1184 
1185 	rip = 0xfff0;
1186 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1187 		goto done;
1188 
1189 	/*
1190 	 * According to Intels Software Developer Manual CR0 should be
1191 	 * initialized with CR0_ET | CR0_NW | CR0_CD but that crashes some
1192 	 * guests like Windows.
1193 	 */
1194 	cr0 = CR0_NE;
1195 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1196 		goto done;
1197 
1198 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR2, zero)) != 0)
1199 		goto done;
1200 
1201 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1202 		goto done;
1203 
1204 	cr4 = 0;
1205 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1206 		goto done;
1207 
1208 	/*
1209 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1210 	 */
1211 	desc_base = 0xffff0000;
1212 	desc_limit = 0xffff;
1213 	desc_access = 0x0093;
1214 	error = vm_set_desc(vcpu, VM_REG_GUEST_CS,
1215 			    desc_base, desc_limit, desc_access);
1216 	if (error)
1217 		goto done;
1218 
1219 	sel = 0xf000;
1220 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_CS, sel)) != 0)
1221 		goto done;
1222 
1223 	/*
1224 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1225 	 */
1226 	desc_base = 0;
1227 	desc_limit = 0xffff;
1228 	desc_access = 0x0093;
1229 	error = vm_set_desc(vcpu, VM_REG_GUEST_SS,
1230 			    desc_base, desc_limit, desc_access);
1231 	if (error)
1232 		goto done;
1233 
1234 	error = vm_set_desc(vcpu, VM_REG_GUEST_DS,
1235 			    desc_base, desc_limit, desc_access);
1236 	if (error)
1237 		goto done;
1238 
1239 	error = vm_set_desc(vcpu, VM_REG_GUEST_ES,
1240 			    desc_base, desc_limit, desc_access);
1241 	if (error)
1242 		goto done;
1243 
1244 	error = vm_set_desc(vcpu, VM_REG_GUEST_FS,
1245 			    desc_base, desc_limit, desc_access);
1246 	if (error)
1247 		goto done;
1248 
1249 	error = vm_set_desc(vcpu, VM_REG_GUEST_GS,
1250 			    desc_base, desc_limit, desc_access);
1251 	if (error)
1252 		goto done;
1253 
1254 	sel = 0;
1255 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_SS, sel)) != 0)
1256 		goto done;
1257 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_DS, sel)) != 0)
1258 		goto done;
1259 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_ES, sel)) != 0)
1260 		goto done;
1261 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_FS, sel)) != 0)
1262 		goto done;
1263 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_GS, sel)) != 0)
1264 		goto done;
1265 
1266 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_EFER, zero)) != 0)
1267 		goto done;
1268 
1269 	/* General purpose registers */
1270 	rdx = 0xf00;
1271 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1272 		goto done;
1273 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1274 		goto done;
1275 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1276 		goto done;
1277 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1278 		goto done;
1279 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1280 		goto done;
1281 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1282 		goto done;
1283 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1284 		goto done;
1285 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1286 		goto done;
1287 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R8, zero)) != 0)
1288 		goto done;
1289 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R9, zero)) != 0)
1290 		goto done;
1291 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R10, zero)) != 0)
1292 		goto done;
1293 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R11, zero)) != 0)
1294 		goto done;
1295 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R12, zero)) != 0)
1296 		goto done;
1297 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R13, zero)) != 0)
1298 		goto done;
1299 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R14, zero)) != 0)
1300 		goto done;
1301 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_R15, zero)) != 0)
1302 		goto done;
1303 
1304 	/* GDTR, IDTR */
1305 	desc_base = 0;
1306 	desc_limit = 0xffff;
1307 	desc_access = 0;
1308 	error = vm_set_desc(vcpu, VM_REG_GUEST_GDTR,
1309 			    desc_base, desc_limit, desc_access);
1310 	if (error != 0)
1311 		goto done;
1312 
1313 	error = vm_set_desc(vcpu, VM_REG_GUEST_IDTR,
1314 			    desc_base, desc_limit, desc_access);
1315 	if (error != 0)
1316 		goto done;
1317 
1318 	/* TR */
1319 	desc_base = 0;
1320 	desc_limit = 0xffff;
1321 	desc_access = 0x0000008b;
1322 	error = vm_set_desc(vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1323 	if (error)
1324 		goto done;
1325 
1326 	sel = 0;
1327 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_TR, sel)) != 0)
1328 		goto done;
1329 
1330 	/* LDTR */
1331 	desc_base = 0;
1332 	desc_limit = 0xffff;
1333 	desc_access = 0x00000082;
1334 	error = vm_set_desc(vcpu, VM_REG_GUEST_LDTR, desc_base,
1335 			    desc_limit, desc_access);
1336 	if (error)
1337 		goto done;
1338 
1339 	sel = 0;
1340 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1341 		goto done;
1342 
1343 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_DR6,
1344 		 0xffff0ff0)) != 0)
1345 		goto done;
1346 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_DR7, 0x400)) !=
1347 	    0)
1348 		goto done;
1349 
1350 	if ((error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW,
1351 		 zero)) != 0)
1352 		goto done;
1353 
1354 	error = 0;
1355 done:
1356 	return (error);
1357 }
1358 
1359 int
1360 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1361 {
1362 	int error, i;
1363 	struct vm_gpa_pte gpapte;
1364 
1365 	bzero(&gpapte, sizeof(gpapte));
1366 	gpapte.gpa = gpa;
1367 
1368 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1369 
1370 	if (error == 0) {
1371 		*num = gpapte.ptenum;
1372 		for (i = 0; i < gpapte.ptenum; i++)
1373 			pte[i] = gpapte.pte[i];
1374 	}
1375 
1376 	return (error);
1377 }
1378 
1379 int
1380 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1381 {
1382 	int error;
1383 	struct vm_hpet_cap cap;
1384 
1385 	bzero(&cap, sizeof(struct vm_hpet_cap));
1386 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1387 	if (capabilities != NULL)
1388 		*capabilities = cap.capabilities;
1389 	return (error);
1390 }
1391 
1392 int
1393 vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging,
1394     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1395 {
1396 	struct vm_gla2gpa gg;
1397 	int error;
1398 
1399 	bzero(&gg, sizeof(struct vm_gla2gpa));
1400 	gg.prot = prot;
1401 	gg.gla = gla;
1402 	gg.paging = *paging;
1403 
1404 	error = vcpu_ioctl(vcpu, VM_GLA2GPA, &gg);
1405 	if (error == 0) {
1406 		*fault = gg.fault;
1407 		*gpa = gg.gpa;
1408 	}
1409 	return (error);
1410 }
1411 
1412 int
1413 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
1414     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1415 {
1416 	struct vm_gla2gpa gg;
1417 	int error;
1418 
1419 	bzero(&gg, sizeof(struct vm_gla2gpa));
1420 	gg.prot = prot;
1421 	gg.gla = gla;
1422 	gg.paging = *paging;
1423 
1424 	error = vcpu_ioctl(vcpu, VM_GLA2GPA_NOFAULT, &gg);
1425 	if (error == 0) {
1426 		*fault = gg.fault;
1427 		*gpa = gg.gpa;
1428 	}
1429 	return (error);
1430 }
1431 
1432 #ifndef min
1433 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
1434 #endif
1435 
1436 int
1437 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
1438     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1439     int *fault)
1440 {
1441 	void *va;
1442 	uint64_t gpa, off;
1443 	int error, i, n;
1444 
1445 	for (i = 0; i < iovcnt; i++) {
1446 		iov[i].iov_base = 0;
1447 		iov[i].iov_len = 0;
1448 	}
1449 
1450 	while (len) {
1451 		assert(iovcnt > 0);
1452 		error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
1453 		if (error || *fault)
1454 			return (error);
1455 
1456 		off = gpa & PAGE_MASK;
1457 		n = MIN(len, PAGE_SIZE - off);
1458 
1459 		va = vm_map_gpa(vcpu->ctx, gpa, n);
1460 		if (va == NULL)
1461 			return (EFAULT);
1462 
1463 		iov->iov_base = va;
1464 		iov->iov_len = n;
1465 		iov++;
1466 		iovcnt--;
1467 
1468 		gla += n;
1469 		len -= n;
1470 	}
1471 	return (0);
1472 }
1473 
1474 void
1475 vm_copy_teardown(struct iovec *iov __unused, int iovcnt __unused)
1476 {
1477 	/*
1478 	 * Intentionally empty.  This is used by the instruction
1479 	 * emulation code shared with the kernel.  The in-kernel
1480 	 * version of this is non-empty.
1481 	 */
1482 }
1483 
1484 void
1485 vm_copyin(struct iovec *iov, void *vp, size_t len)
1486 {
1487 	const char *src;
1488 	char *dst;
1489 	size_t n;
1490 
1491 	dst = vp;
1492 	while (len) {
1493 		assert(iov->iov_len);
1494 		n = min(len, iov->iov_len);
1495 		src = iov->iov_base;
1496 		bcopy(src, dst, n);
1497 
1498 		iov++;
1499 		dst += n;
1500 		len -= n;
1501 	}
1502 }
1503 
1504 void
1505 vm_copyout(const void *vp, struct iovec *iov, size_t len)
1506 {
1507 	const char *src;
1508 	char *dst;
1509 	size_t n;
1510 
1511 	src = vp;
1512 	while (len) {
1513 		assert(iov->iov_len);
1514 		n = min(len, iov->iov_len);
1515 		dst = iov->iov_base;
1516 		bcopy(src, dst, n);
1517 
1518 		iov++;
1519 		src += n;
1520 		len -= n;
1521 	}
1522 }
1523 
1524 static int
1525 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1526 {
1527 	struct vm_cpuset vm_cpuset;
1528 	int error;
1529 
1530 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1531 	vm_cpuset.which = which;
1532 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1533 	vm_cpuset.cpus = cpus;
1534 
1535 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1536 	return (error);
1537 }
1538 
1539 int
1540 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1541 {
1542 
1543 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1544 }
1545 
1546 int
1547 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1548 {
1549 
1550 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1551 }
1552 
1553 int
1554 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
1555 {
1556 
1557 	return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
1558 }
1559 
1560 int
1561 vm_activate_cpu(struct vcpu *vcpu)
1562 {
1563 	struct vm_activate_cpu ac;
1564 	int error;
1565 
1566 	bzero(&ac, sizeof(struct vm_activate_cpu));
1567 	error = vcpu_ioctl(vcpu, VM_ACTIVATE_CPU, &ac);
1568 	return (error);
1569 }
1570 
1571 int
1572 vm_suspend_all_cpus(struct vmctx *ctx)
1573 {
1574 	struct vm_activate_cpu ac;
1575 	int error;
1576 
1577 	bzero(&ac, sizeof(struct vm_activate_cpu));
1578 	ac.vcpuid = -1;
1579 	error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
1580 	return (error);
1581 }
1582 
1583 int
1584 vm_suspend_cpu(struct vcpu *vcpu)
1585 {
1586 	struct vm_activate_cpu ac;
1587 	int error;
1588 
1589 	bzero(&ac, sizeof(struct vm_activate_cpu));
1590 	error = vcpu_ioctl(vcpu, VM_SUSPEND_CPU, &ac);
1591 	return (error);
1592 }
1593 
1594 int
1595 vm_resume_cpu(struct vcpu *vcpu)
1596 {
1597 	struct vm_activate_cpu ac;
1598 	int error;
1599 
1600 	bzero(&ac, sizeof(struct vm_activate_cpu));
1601 	error = vcpu_ioctl(vcpu, VM_RESUME_CPU, &ac);
1602 	return (error);
1603 }
1604 
1605 int
1606 vm_resume_all_cpus(struct vmctx *ctx)
1607 {
1608 	struct vm_activate_cpu ac;
1609 	int error;
1610 
1611 	bzero(&ac, sizeof(struct vm_activate_cpu));
1612 	ac.vcpuid = -1;
1613 	error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
1614 	return (error);
1615 }
1616 
1617 int
1618 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
1619 {
1620 	struct vm_intinfo vmii;
1621 	int error;
1622 
1623 	bzero(&vmii, sizeof(struct vm_intinfo));
1624 	error = vcpu_ioctl(vcpu, VM_GET_INTINFO, &vmii);
1625 	if (error == 0) {
1626 		*info1 = vmii.info1;
1627 		*info2 = vmii.info2;
1628 	}
1629 	return (error);
1630 }
1631 
1632 int
1633 vm_set_intinfo(struct vcpu *vcpu, uint64_t info1)
1634 {
1635 	struct vm_intinfo vmii;
1636 	int error;
1637 
1638 	bzero(&vmii, sizeof(struct vm_intinfo));
1639 	vmii.info1 = info1;
1640 	error = vcpu_ioctl(vcpu, VM_SET_INTINFO, &vmii);
1641 	return (error);
1642 }
1643 
1644 int
1645 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1646 {
1647 	struct vm_rtc_data rtcdata;
1648 	int error;
1649 
1650 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1651 	rtcdata.offset = offset;
1652 	rtcdata.value = value;
1653 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1654 	return (error);
1655 }
1656 
1657 int
1658 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1659 {
1660 	struct vm_rtc_data rtcdata;
1661 	int error;
1662 
1663 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1664 	rtcdata.offset = offset;
1665 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1666 	if (error == 0)
1667 		*retval = rtcdata.value;
1668 	return (error);
1669 }
1670 
1671 int
1672 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1673 {
1674 	struct vm_rtc_time rtctime;
1675 	int error;
1676 
1677 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1678 	rtctime.secs = secs;
1679 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1680 	return (error);
1681 }
1682 
1683 int
1684 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1685 {
1686 	struct vm_rtc_time rtctime;
1687 	int error;
1688 
1689 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1690 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1691 	if (error == 0)
1692 		*secs = rtctime.secs;
1693 	return (error);
1694 }
1695 
1696 int
1697 vm_restart_instruction(struct vcpu *vcpu)
1698 {
1699 	int arg;
1700 
1701 	return (vcpu_ioctl(vcpu, VM_RESTART_INSTRUCTION, &arg));
1702 }
1703 
1704 int
1705 vm_snapshot_req(struct vmctx *ctx, struct vm_snapshot_meta *meta)
1706 {
1707 
1708 	if (ioctl(ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) {
1709 #ifdef SNAPSHOT_DEBUG
1710 		fprintf(stderr, "%s: snapshot failed for %s: %d\r\n",
1711 		    __func__, meta->dev_name, errno);
1712 #endif
1713 		return (-1);
1714 	}
1715 	return (0);
1716 }
1717 
1718 int
1719 vm_restore_time(struct vmctx *ctx)
1720 {
1721 	int dummy;
1722 
1723 	dummy = 0;
1724 	return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy));
1725 }
1726 
1727 int
1728 vm_set_topology(struct vmctx *ctx,
1729     uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
1730 {
1731 	struct vm_cpu_topology topology;
1732 
1733 	bzero(&topology, sizeof (struct vm_cpu_topology));
1734 	topology.sockets = sockets;
1735 	topology.cores = cores;
1736 	topology.threads = threads;
1737 	topology.maxcpus = maxcpus;
1738 	return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
1739 }
1740 
1741 int
1742 vm_get_topology(struct vmctx *ctx,
1743     uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
1744 {
1745 	struct vm_cpu_topology topology;
1746 	int error;
1747 
1748 	bzero(&topology, sizeof (struct vm_cpu_topology));
1749 	error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
1750 	if (error == 0) {
1751 		*sockets = topology.sockets;
1752 		*cores = topology.cores;
1753 		*threads = topology.threads;
1754 		*maxcpus = topology.maxcpus;
1755 	}
1756 	return (error);
1757 }
1758 
1759 /* Keep in sync with machine/vmm_dev.h. */
1760 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
1761     VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
1762     VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER,
1763     VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
1764     VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
1765     VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
1766     VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
1767     VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
1768     VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
1769     VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
1770     VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
1771     VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
1772     VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX,
1773     VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
1774     VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
1775     VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
1776     VM_GLA2GPA_NOFAULT,
1777     VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
1778     VM_SET_INTINFO, VM_GET_INTINFO,
1779     VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
1780     VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY,
1781     VM_SNAPSHOT_REQ, VM_RESTORE_TIME
1782 };
1783 
1784 int
1785 vm_limit_rights(struct vmctx *ctx)
1786 {
1787 	cap_rights_t rights;
1788 	size_t ncmds;
1789 
1790 	cap_rights_init(&rights, CAP_IOCTL, CAP_MMAP_RW);
1791 	if (caph_rights_limit(ctx->fd, &rights) != 0)
1792 		return (-1);
1793 	ncmds = nitems(vm_ioctl_cmds);
1794 	if (caph_ioctls_limit(ctx->fd, vm_ioctl_cmds, ncmds) != 0)
1795 		return (-1);
1796 	return (0);
1797 }
1798 
1799 /*
1800  * Avoid using in new code.  Operations on the fd should be wrapped here so that
1801  * capability rights can be kept in sync.
1802  */
1803 int
1804 vm_get_device_fd(struct vmctx *ctx)
1805 {
1806 
1807 	return (ctx->fd);
1808 }
1809 
1810 /* Legacy interface, do not use. */
1811 const cap_ioctl_t *
1812 vm_get_ioctls(size_t *len)
1813 {
1814 	cap_ioctl_t *cmds;
1815 
1816 	if (len == NULL) {
1817 		cmds = malloc(sizeof(vm_ioctl_cmds));
1818 		if (cmds == NULL)
1819 			return (NULL);
1820 		bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
1821 		return (cmds);
1822 	}
1823 
1824 	*len = nitems(vm_ioctl_cmds);
1825 	return (NULL);
1826 }
1827