1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/sysctl.h> 36 #include <sys/ioctl.h> 37 #include <sys/mman.h> 38 #include <sys/_iovec.h> 39 #include <sys/cpuset.h> 40 41 #include <x86/segments.h> 42 #include <machine/specialreg.h> 43 44 #include <errno.h> 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <assert.h> 48 #include <string.h> 49 #include <fcntl.h> 50 #include <unistd.h> 51 52 #include <libutil.h> 53 54 #include <machine/vmm.h> 55 #include <machine/vmm_dev.h> 56 57 #include "vmmapi.h" 58 59 #define MB (1024 * 1024UL) 60 #define GB (1024 * 1024 * 1024UL) 61 62 /* 63 * Size of the guard region before and after the virtual address space 64 * mapping the guest physical memory. This must be a multiple of the 65 * superpage size for performance reasons. 66 */ 67 #define VM_MMAP_GUARD_SIZE (4 * MB) 68 69 #define PROT_RW (PROT_READ | PROT_WRITE) 70 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 71 72 struct vmctx { 73 int fd; 74 uint32_t lowmem_limit; 75 int memflags; 76 size_t lowmem; 77 size_t highmem; 78 char *baseaddr; 79 char *name; 80 }; 81 82 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 83 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 84 85 static int 86 vm_device_open(const char *name) 87 { 88 int fd, len; 89 char *vmfile; 90 91 len = strlen("/dev/vmm/") + strlen(name) + 1; 92 vmfile = malloc(len); 93 assert(vmfile != NULL); 94 snprintf(vmfile, len, "/dev/vmm/%s", name); 95 96 /* Open the device file */ 97 fd = open(vmfile, O_RDWR, 0); 98 99 free(vmfile); 100 return (fd); 101 } 102 103 int 104 vm_create(const char *name) 105 { 106 107 return (CREATE((char *)name)); 108 } 109 110 struct vmctx * 111 vm_open(const char *name) 112 { 113 struct vmctx *vm; 114 115 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 116 assert(vm != NULL); 117 118 vm->fd = -1; 119 vm->memflags = 0; 120 vm->lowmem_limit = 3 * GB; 121 vm->name = (char *)(vm + 1); 122 strcpy(vm->name, name); 123 124 if ((vm->fd = vm_device_open(vm->name)) < 0) 125 goto err; 126 127 return (vm); 128 err: 129 vm_destroy(vm); 130 return (NULL); 131 } 132 133 void 134 vm_destroy(struct vmctx *vm) 135 { 136 assert(vm != NULL); 137 138 if (vm->fd >= 0) 139 close(vm->fd); 140 DESTROY(vm->name); 141 142 free(vm); 143 } 144 145 int 146 vm_parse_memsize(const char *optarg, size_t *ret_memsize) 147 { 148 char *endptr; 149 size_t optval; 150 int error; 151 152 optval = strtoul(optarg, &endptr, 0); 153 if (*optarg != '\0' && *endptr == '\0') { 154 /* 155 * For the sake of backward compatibility if the memory size 156 * specified on the command line is less than a megabyte then 157 * it is interpreted as being in units of MB. 158 */ 159 if (optval < MB) 160 optval *= MB; 161 *ret_memsize = optval; 162 error = 0; 163 } else 164 error = expand_number(optarg, ret_memsize); 165 166 return (error); 167 } 168 169 uint32_t 170 vm_get_lowmem_limit(struct vmctx *ctx) 171 { 172 173 return (ctx->lowmem_limit); 174 } 175 176 void 177 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 178 { 179 180 ctx->lowmem_limit = limit; 181 } 182 183 void 184 vm_set_memflags(struct vmctx *ctx, int flags) 185 { 186 187 ctx->memflags = flags; 188 } 189 190 int 191 vm_get_memflags(struct vmctx *ctx) 192 { 193 194 return (ctx->memflags); 195 } 196 197 /* 198 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 199 */ 200 int 201 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 202 size_t len, int prot) 203 { 204 struct vm_memmap memmap; 205 int error, flags; 206 207 memmap.gpa = gpa; 208 memmap.segid = segid; 209 memmap.segoff = off; 210 memmap.len = len; 211 memmap.prot = prot; 212 memmap.flags = 0; 213 214 if (ctx->memflags & VM_MEM_F_WIRED) 215 memmap.flags |= VM_MEMMAP_F_WIRED; 216 217 /* 218 * If this mapping already exists then don't create it again. This 219 * is the common case for SYSMEM mappings created by bhyveload(8). 220 */ 221 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 222 if (error == 0 && gpa == memmap.gpa) { 223 if (segid != memmap.segid || off != memmap.segoff || 224 prot != memmap.prot || flags != memmap.flags) { 225 errno = EEXIST; 226 return (-1); 227 } else { 228 return (0); 229 } 230 } 231 232 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 233 return (error); 234 } 235 236 int 237 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 238 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 239 { 240 struct vm_memmap memmap; 241 int error; 242 243 bzero(&memmap, sizeof(struct vm_memmap)); 244 memmap.gpa = *gpa; 245 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 246 if (error == 0) { 247 *gpa = memmap.gpa; 248 *segid = memmap.segid; 249 *segoff = memmap.segoff; 250 *len = memmap.len; 251 *prot = memmap.prot; 252 *flags = memmap.flags; 253 } 254 return (error); 255 } 256 257 /* 258 * Return 0 if the segments are identical and non-zero otherwise. 259 * 260 * This is slightly complicated by the fact that only device memory segments 261 * are named. 262 */ 263 static int 264 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 265 { 266 267 if (len == len2) { 268 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 269 return (0); 270 } 271 return (-1); 272 } 273 274 static int 275 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 276 { 277 struct vm_memseg memseg; 278 size_t n; 279 int error; 280 281 /* 282 * If the memory segment has already been created then just return. 283 * This is the usual case for the SYSMEM segment created by userspace 284 * loaders like bhyveload(8). 285 */ 286 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 287 sizeof(memseg.name)); 288 if (error) 289 return (error); 290 291 if (memseg.len != 0) { 292 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 293 errno = EINVAL; 294 return (-1); 295 } else { 296 return (0); 297 } 298 } 299 300 bzero(&memseg, sizeof(struct vm_memseg)); 301 memseg.segid = segid; 302 memseg.len = len; 303 if (name != NULL) { 304 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 305 if (n >= sizeof(memseg.name)) { 306 errno = ENAMETOOLONG; 307 return (-1); 308 } 309 } 310 311 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 312 return (error); 313 } 314 315 int 316 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 317 size_t bufsize) 318 { 319 struct vm_memseg memseg; 320 size_t n; 321 int error; 322 323 memseg.segid = segid; 324 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 325 if (error == 0) { 326 *lenp = memseg.len; 327 n = strlcpy(namebuf, memseg.name, bufsize); 328 if (n >= bufsize) { 329 errno = ENAMETOOLONG; 330 error = -1; 331 } 332 } 333 return (error); 334 } 335 336 static int 337 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 338 { 339 char *ptr; 340 int error, flags; 341 342 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 343 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 344 if (error) 345 return (error); 346 347 flags = MAP_SHARED | MAP_FIXED; 348 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 349 flags |= MAP_NOCORE; 350 351 /* mmap into the process address space on the host */ 352 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 353 if (ptr == MAP_FAILED) 354 return (-1); 355 356 return (0); 357 } 358 359 int 360 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 361 { 362 size_t objsize, len; 363 vm_paddr_t gpa; 364 char *baseaddr, *ptr; 365 int error; 366 367 assert(vms == VM_MMAP_ALL); 368 369 /* 370 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 371 * create another 'highmem' segment above 4GB for the remainder. 372 */ 373 if (memsize > ctx->lowmem_limit) { 374 ctx->lowmem = ctx->lowmem_limit; 375 ctx->highmem = memsize - ctx->lowmem_limit; 376 objsize = 4*GB + ctx->highmem; 377 } else { 378 ctx->lowmem = memsize; 379 ctx->highmem = 0; 380 objsize = ctx->lowmem; 381 } 382 383 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 384 if (error) 385 return (error); 386 387 /* 388 * Stake out a contiguous region covering the guest physical memory 389 * and the adjoining guard regions. 390 */ 391 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 392 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 393 if (ptr == MAP_FAILED) 394 return (-1); 395 396 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 397 if (ctx->highmem > 0) { 398 gpa = 4*GB; 399 len = ctx->highmem; 400 error = setup_memory_segment(ctx, gpa, len, baseaddr); 401 if (error) 402 return (error); 403 } 404 405 if (ctx->lowmem > 0) { 406 gpa = 0; 407 len = ctx->lowmem; 408 error = setup_memory_segment(ctx, gpa, len, baseaddr); 409 if (error) 410 return (error); 411 } 412 413 ctx->baseaddr = baseaddr; 414 415 return (0); 416 } 417 418 /* 419 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 420 * the lowmem or highmem regions. 421 * 422 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 423 * The instruction emulation code depends on this behavior. 424 */ 425 void * 426 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 427 { 428 429 if (ctx->lowmem > 0) { 430 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 431 gaddr + len <= ctx->lowmem) 432 return (ctx->baseaddr + gaddr); 433 } 434 435 if (ctx->highmem > 0) { 436 if (gaddr >= 4*GB) { 437 if (gaddr < 4*GB + ctx->highmem && 438 len <= ctx->highmem && 439 gaddr + len <= 4*GB + ctx->highmem) 440 return (ctx->baseaddr + gaddr); 441 } 442 } 443 444 return (NULL); 445 } 446 447 size_t 448 vm_get_lowmem_size(struct vmctx *ctx) 449 { 450 451 return (ctx->lowmem); 452 } 453 454 size_t 455 vm_get_highmem_size(struct vmctx *ctx) 456 { 457 458 return (ctx->highmem); 459 } 460 461 void * 462 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 463 { 464 char pathname[MAXPATHLEN]; 465 size_t len2; 466 char *base, *ptr; 467 int fd, error, flags; 468 469 fd = -1; 470 ptr = MAP_FAILED; 471 if (name == NULL || strlen(name) == 0) { 472 errno = EINVAL; 473 goto done; 474 } 475 476 error = vm_alloc_memseg(ctx, segid, len, name); 477 if (error) 478 goto done; 479 480 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 481 strlcat(pathname, ctx->name, sizeof(pathname)); 482 strlcat(pathname, ".", sizeof(pathname)); 483 strlcat(pathname, name, sizeof(pathname)); 484 485 fd = open(pathname, O_RDWR); 486 if (fd < 0) 487 goto done; 488 489 /* 490 * Stake out a contiguous region covering the device memory and the 491 * adjoining guard regions. 492 */ 493 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 494 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 495 0); 496 if (base == MAP_FAILED) 497 goto done; 498 499 flags = MAP_SHARED | MAP_FIXED; 500 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 501 flags |= MAP_NOCORE; 502 503 /* mmap the devmem region in the host address space */ 504 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 505 done: 506 if (fd >= 0) 507 close(fd); 508 return (ptr); 509 } 510 511 int 512 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 513 uint64_t base, uint32_t limit, uint32_t access) 514 { 515 int error; 516 struct vm_seg_desc vmsegdesc; 517 518 bzero(&vmsegdesc, sizeof(vmsegdesc)); 519 vmsegdesc.cpuid = vcpu; 520 vmsegdesc.regnum = reg; 521 vmsegdesc.desc.base = base; 522 vmsegdesc.desc.limit = limit; 523 vmsegdesc.desc.access = access; 524 525 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 526 return (error); 527 } 528 529 int 530 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 531 uint64_t *base, uint32_t *limit, uint32_t *access) 532 { 533 int error; 534 struct vm_seg_desc vmsegdesc; 535 536 bzero(&vmsegdesc, sizeof(vmsegdesc)); 537 vmsegdesc.cpuid = vcpu; 538 vmsegdesc.regnum = reg; 539 540 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 541 if (error == 0) { 542 *base = vmsegdesc.desc.base; 543 *limit = vmsegdesc.desc.limit; 544 *access = vmsegdesc.desc.access; 545 } 546 return (error); 547 } 548 549 int 550 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 551 { 552 int error; 553 554 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 555 &seg_desc->access); 556 return (error); 557 } 558 559 int 560 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 561 { 562 int error; 563 struct vm_register vmreg; 564 565 bzero(&vmreg, sizeof(vmreg)); 566 vmreg.cpuid = vcpu; 567 vmreg.regnum = reg; 568 vmreg.regval = val; 569 570 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 571 return (error); 572 } 573 574 int 575 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 576 { 577 int error; 578 struct vm_register vmreg; 579 580 bzero(&vmreg, sizeof(vmreg)); 581 vmreg.cpuid = vcpu; 582 vmreg.regnum = reg; 583 584 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 585 *ret_val = vmreg.regval; 586 return (error); 587 } 588 589 int 590 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 591 const int *regnums, uint64_t *regvals) 592 { 593 int error; 594 struct vm_register_set vmregset; 595 596 bzero(&vmregset, sizeof(vmregset)); 597 vmregset.cpuid = vcpu; 598 vmregset.count = count; 599 vmregset.regnums = regnums; 600 vmregset.regvals = regvals; 601 602 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 603 return (error); 604 } 605 606 int 607 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 608 const int *regnums, uint64_t *regvals) 609 { 610 int error; 611 struct vm_register_set vmregset; 612 613 bzero(&vmregset, sizeof(vmregset)); 614 vmregset.cpuid = vcpu; 615 vmregset.count = count; 616 vmregset.regnums = regnums; 617 vmregset.regvals = regvals; 618 619 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 620 return (error); 621 } 622 623 int 624 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit) 625 { 626 int error; 627 struct vm_run vmrun; 628 629 bzero(&vmrun, sizeof(vmrun)); 630 vmrun.cpuid = vcpu; 631 632 error = ioctl(ctx->fd, VM_RUN, &vmrun); 633 bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit)); 634 return (error); 635 } 636 637 int 638 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 639 { 640 struct vm_suspend vmsuspend; 641 642 bzero(&vmsuspend, sizeof(vmsuspend)); 643 vmsuspend.how = how; 644 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 645 } 646 647 int 648 vm_reinit(struct vmctx *ctx) 649 { 650 651 return (ioctl(ctx->fd, VM_REINIT, 0)); 652 } 653 654 int 655 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 656 uint32_t errcode, int restart_instruction) 657 { 658 struct vm_exception exc; 659 660 exc.cpuid = vcpu; 661 exc.vector = vector; 662 exc.error_code = errcode; 663 exc.error_code_valid = errcode_valid; 664 exc.restart_instruction = restart_instruction; 665 666 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 667 } 668 669 int 670 vm_apicid2vcpu(struct vmctx *ctx, int apicid) 671 { 672 /* 673 * The apic id associated with the 'vcpu' has the same numerical value 674 * as the 'vcpu' itself. 675 */ 676 return (apicid); 677 } 678 679 int 680 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 681 { 682 struct vm_lapic_irq vmirq; 683 684 bzero(&vmirq, sizeof(vmirq)); 685 vmirq.cpuid = vcpu; 686 vmirq.vector = vector; 687 688 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 689 } 690 691 int 692 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 693 { 694 struct vm_lapic_irq vmirq; 695 696 bzero(&vmirq, sizeof(vmirq)); 697 vmirq.cpuid = vcpu; 698 vmirq.vector = vector; 699 700 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 701 } 702 703 int 704 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 705 { 706 struct vm_lapic_msi vmmsi; 707 708 bzero(&vmmsi, sizeof(vmmsi)); 709 vmmsi.addr = addr; 710 vmmsi.msg = msg; 711 712 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 713 } 714 715 int 716 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 717 { 718 struct vm_ioapic_irq ioapic_irq; 719 720 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 721 ioapic_irq.irq = irq; 722 723 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 724 } 725 726 int 727 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 728 { 729 struct vm_ioapic_irq ioapic_irq; 730 731 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 732 ioapic_irq.irq = irq; 733 734 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 735 } 736 737 int 738 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 739 { 740 struct vm_ioapic_irq ioapic_irq; 741 742 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 743 ioapic_irq.irq = irq; 744 745 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 746 } 747 748 int 749 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 750 { 751 752 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 753 } 754 755 int 756 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 757 { 758 struct vm_isa_irq isa_irq; 759 760 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 761 isa_irq.atpic_irq = atpic_irq; 762 isa_irq.ioapic_irq = ioapic_irq; 763 764 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 765 } 766 767 int 768 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 769 { 770 struct vm_isa_irq isa_irq; 771 772 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 773 isa_irq.atpic_irq = atpic_irq; 774 isa_irq.ioapic_irq = ioapic_irq; 775 776 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 777 } 778 779 int 780 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 781 { 782 struct vm_isa_irq isa_irq; 783 784 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 785 isa_irq.atpic_irq = atpic_irq; 786 isa_irq.ioapic_irq = ioapic_irq; 787 788 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 789 } 790 791 int 792 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 793 enum vm_intr_trigger trigger) 794 { 795 struct vm_isa_irq_trigger isa_irq_trigger; 796 797 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 798 isa_irq_trigger.atpic_irq = atpic_irq; 799 isa_irq_trigger.trigger = trigger; 800 801 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 802 } 803 804 int 805 vm_inject_nmi(struct vmctx *ctx, int vcpu) 806 { 807 struct vm_nmi vmnmi; 808 809 bzero(&vmnmi, sizeof(vmnmi)); 810 vmnmi.cpuid = vcpu; 811 812 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 813 } 814 815 static struct { 816 const char *name; 817 int type; 818 } capstrmap[] = { 819 { "hlt_exit", VM_CAP_HALT_EXIT }, 820 { "mtrap_exit", VM_CAP_MTRAP_EXIT }, 821 { "pause_exit", VM_CAP_PAUSE_EXIT }, 822 { "unrestricted_guest", VM_CAP_UNRESTRICTED_GUEST }, 823 { "enable_invpcid", VM_CAP_ENABLE_INVPCID }, 824 { 0 } 825 }; 826 827 int 828 vm_capability_name2type(const char *capname) 829 { 830 int i; 831 832 for (i = 0; capstrmap[i].name != NULL && capname != NULL; i++) { 833 if (strcmp(capstrmap[i].name, capname) == 0) 834 return (capstrmap[i].type); 835 } 836 837 return (-1); 838 } 839 840 const char * 841 vm_capability_type2name(int type) 842 { 843 int i; 844 845 for (i = 0; capstrmap[i].name != NULL; i++) { 846 if (capstrmap[i].type == type) 847 return (capstrmap[i].name); 848 } 849 850 return (NULL); 851 } 852 853 int 854 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 855 int *retval) 856 { 857 int error; 858 struct vm_capability vmcap; 859 860 bzero(&vmcap, sizeof(vmcap)); 861 vmcap.cpuid = vcpu; 862 vmcap.captype = cap; 863 864 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 865 *retval = vmcap.capval; 866 return (error); 867 } 868 869 int 870 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 871 { 872 struct vm_capability vmcap; 873 874 bzero(&vmcap, sizeof(vmcap)); 875 vmcap.cpuid = vcpu; 876 vmcap.captype = cap; 877 vmcap.capval = val; 878 879 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 880 } 881 882 int 883 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 884 { 885 struct vm_pptdev pptdev; 886 887 bzero(&pptdev, sizeof(pptdev)); 888 pptdev.bus = bus; 889 pptdev.slot = slot; 890 pptdev.func = func; 891 892 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 893 } 894 895 int 896 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 897 { 898 struct vm_pptdev pptdev; 899 900 bzero(&pptdev, sizeof(pptdev)); 901 pptdev.bus = bus; 902 pptdev.slot = slot; 903 pptdev.func = func; 904 905 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 906 } 907 908 int 909 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 910 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 911 { 912 struct vm_pptdev_mmio pptmmio; 913 914 bzero(&pptmmio, sizeof(pptmmio)); 915 pptmmio.bus = bus; 916 pptmmio.slot = slot; 917 pptmmio.func = func; 918 pptmmio.gpa = gpa; 919 pptmmio.len = len; 920 pptmmio.hpa = hpa; 921 922 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 923 } 924 925 int 926 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 927 uint64_t addr, uint64_t msg, int numvec) 928 { 929 struct vm_pptdev_msi pptmsi; 930 931 bzero(&pptmsi, sizeof(pptmsi)); 932 pptmsi.vcpu = vcpu; 933 pptmsi.bus = bus; 934 pptmsi.slot = slot; 935 pptmsi.func = func; 936 pptmsi.msg = msg; 937 pptmsi.addr = addr; 938 pptmsi.numvec = numvec; 939 940 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 941 } 942 943 int 944 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 945 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 946 { 947 struct vm_pptdev_msix pptmsix; 948 949 bzero(&pptmsix, sizeof(pptmsix)); 950 pptmsix.vcpu = vcpu; 951 pptmsix.bus = bus; 952 pptmsix.slot = slot; 953 pptmsix.func = func; 954 pptmsix.idx = idx; 955 pptmsix.msg = msg; 956 pptmsix.addr = addr; 957 pptmsix.vector_control = vector_control; 958 959 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 960 } 961 962 uint64_t * 963 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 964 int *ret_entries) 965 { 966 int error; 967 968 static struct vm_stats vmstats; 969 970 vmstats.cpuid = vcpu; 971 972 error = ioctl(ctx->fd, VM_STATS, &vmstats); 973 if (error == 0) { 974 if (ret_entries) 975 *ret_entries = vmstats.num_entries; 976 if (ret_tv) 977 *ret_tv = vmstats.tv; 978 return (vmstats.statbuf); 979 } else 980 return (NULL); 981 } 982 983 const char * 984 vm_get_stat_desc(struct vmctx *ctx, int index) 985 { 986 static struct vm_stat_desc statdesc; 987 988 statdesc.index = index; 989 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 990 return (statdesc.desc); 991 else 992 return (NULL); 993 } 994 995 int 996 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 997 { 998 int error; 999 struct vm_x2apic x2apic; 1000 1001 bzero(&x2apic, sizeof(x2apic)); 1002 x2apic.cpuid = vcpu; 1003 1004 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1005 *state = x2apic.state; 1006 return (error); 1007 } 1008 1009 int 1010 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1011 { 1012 int error; 1013 struct vm_x2apic x2apic; 1014 1015 bzero(&x2apic, sizeof(x2apic)); 1016 x2apic.cpuid = vcpu; 1017 x2apic.state = state; 1018 1019 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1020 1021 return (error); 1022 } 1023 1024 /* 1025 * From Intel Vol 3a: 1026 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1027 */ 1028 int 1029 vcpu_reset(struct vmctx *vmctx, int vcpu) 1030 { 1031 int error; 1032 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1033 uint32_t desc_access, desc_limit; 1034 uint16_t sel; 1035 1036 zero = 0; 1037 1038 rflags = 0x2; 1039 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1040 if (error) 1041 goto done; 1042 1043 rip = 0xfff0; 1044 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1045 goto done; 1046 1047 cr0 = CR0_NE; 1048 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1049 goto done; 1050 1051 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1052 goto done; 1053 1054 cr4 = 0; 1055 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1056 goto done; 1057 1058 /* 1059 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1060 */ 1061 desc_base = 0xffff0000; 1062 desc_limit = 0xffff; 1063 desc_access = 0x0093; 1064 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1065 desc_base, desc_limit, desc_access); 1066 if (error) 1067 goto done; 1068 1069 sel = 0xf000; 1070 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1071 goto done; 1072 1073 /* 1074 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1075 */ 1076 desc_base = 0; 1077 desc_limit = 0xffff; 1078 desc_access = 0x0093; 1079 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1080 desc_base, desc_limit, desc_access); 1081 if (error) 1082 goto done; 1083 1084 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1085 desc_base, desc_limit, desc_access); 1086 if (error) 1087 goto done; 1088 1089 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1090 desc_base, desc_limit, desc_access); 1091 if (error) 1092 goto done; 1093 1094 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1095 desc_base, desc_limit, desc_access); 1096 if (error) 1097 goto done; 1098 1099 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1100 desc_base, desc_limit, desc_access); 1101 if (error) 1102 goto done; 1103 1104 sel = 0; 1105 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1106 goto done; 1107 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1108 goto done; 1109 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1110 goto done; 1111 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1112 goto done; 1113 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1114 goto done; 1115 1116 /* General purpose registers */ 1117 rdx = 0xf00; 1118 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1119 goto done; 1120 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1121 goto done; 1122 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1123 goto done; 1124 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1125 goto done; 1126 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1127 goto done; 1128 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1129 goto done; 1130 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1131 goto done; 1132 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1133 goto done; 1134 1135 /* GDTR, IDTR */ 1136 desc_base = 0; 1137 desc_limit = 0xffff; 1138 desc_access = 0; 1139 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1140 desc_base, desc_limit, desc_access); 1141 if (error != 0) 1142 goto done; 1143 1144 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1145 desc_base, desc_limit, desc_access); 1146 if (error != 0) 1147 goto done; 1148 1149 /* TR */ 1150 desc_base = 0; 1151 desc_limit = 0xffff; 1152 desc_access = 0x0000008b; 1153 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1154 if (error) 1155 goto done; 1156 1157 sel = 0; 1158 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1159 goto done; 1160 1161 /* LDTR */ 1162 desc_base = 0; 1163 desc_limit = 0xffff; 1164 desc_access = 0x00000082; 1165 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1166 desc_limit, desc_access); 1167 if (error) 1168 goto done; 1169 1170 sel = 0; 1171 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1172 goto done; 1173 1174 /* XXX cr2, debug registers */ 1175 1176 error = 0; 1177 done: 1178 return (error); 1179 } 1180 1181 int 1182 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1183 { 1184 int error, i; 1185 struct vm_gpa_pte gpapte; 1186 1187 bzero(&gpapte, sizeof(gpapte)); 1188 gpapte.gpa = gpa; 1189 1190 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1191 1192 if (error == 0) { 1193 *num = gpapte.ptenum; 1194 for (i = 0; i < gpapte.ptenum; i++) 1195 pte[i] = gpapte.pte[i]; 1196 } 1197 1198 return (error); 1199 } 1200 1201 int 1202 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1203 { 1204 int error; 1205 struct vm_hpet_cap cap; 1206 1207 bzero(&cap, sizeof(struct vm_hpet_cap)); 1208 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1209 if (capabilities != NULL) 1210 *capabilities = cap.capabilities; 1211 return (error); 1212 } 1213 1214 int 1215 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1216 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1217 { 1218 struct vm_gla2gpa gg; 1219 int error; 1220 1221 bzero(&gg, sizeof(struct vm_gla2gpa)); 1222 gg.vcpuid = vcpu; 1223 gg.prot = prot; 1224 gg.gla = gla; 1225 gg.paging = *paging; 1226 1227 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1228 if (error == 0) { 1229 *fault = gg.fault; 1230 *gpa = gg.gpa; 1231 } 1232 return (error); 1233 } 1234 1235 int 1236 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1237 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1238 { 1239 struct vm_gla2gpa gg; 1240 int error; 1241 1242 bzero(&gg, sizeof(struct vm_gla2gpa)); 1243 gg.vcpuid = vcpu; 1244 gg.prot = prot; 1245 gg.gla = gla; 1246 gg.paging = *paging; 1247 1248 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1249 if (error == 0) { 1250 *fault = gg.fault; 1251 *gpa = gg.gpa; 1252 } 1253 return (error); 1254 } 1255 1256 #ifndef min 1257 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1258 #endif 1259 1260 int 1261 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1262 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1263 int *fault) 1264 { 1265 void *va; 1266 uint64_t gpa; 1267 int error, i, n, off; 1268 1269 for (i = 0; i < iovcnt; i++) { 1270 iov[i].iov_base = 0; 1271 iov[i].iov_len = 0; 1272 } 1273 1274 while (len) { 1275 assert(iovcnt > 0); 1276 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1277 if (error || *fault) 1278 return (error); 1279 1280 off = gpa & PAGE_MASK; 1281 n = min(len, PAGE_SIZE - off); 1282 1283 va = vm_map_gpa(ctx, gpa, n); 1284 if (va == NULL) 1285 return (EFAULT); 1286 1287 iov->iov_base = va; 1288 iov->iov_len = n; 1289 iov++; 1290 iovcnt--; 1291 1292 gla += n; 1293 len -= n; 1294 } 1295 return (0); 1296 } 1297 1298 void 1299 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt) 1300 { 1301 1302 return; 1303 } 1304 1305 void 1306 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len) 1307 { 1308 const char *src; 1309 char *dst; 1310 size_t n; 1311 1312 dst = vp; 1313 while (len) { 1314 assert(iov->iov_len); 1315 n = min(len, iov->iov_len); 1316 src = iov->iov_base; 1317 bcopy(src, dst, n); 1318 1319 iov++; 1320 dst += n; 1321 len -= n; 1322 } 1323 } 1324 1325 void 1326 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov, 1327 size_t len) 1328 { 1329 const char *src; 1330 char *dst; 1331 size_t n; 1332 1333 src = vp; 1334 while (len) { 1335 assert(iov->iov_len); 1336 n = min(len, iov->iov_len); 1337 dst = iov->iov_base; 1338 bcopy(src, dst, n); 1339 1340 iov++; 1341 src += n; 1342 len -= n; 1343 } 1344 } 1345 1346 static int 1347 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1348 { 1349 struct vm_cpuset vm_cpuset; 1350 int error; 1351 1352 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1353 vm_cpuset.which = which; 1354 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1355 vm_cpuset.cpus = cpus; 1356 1357 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1358 return (error); 1359 } 1360 1361 int 1362 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1363 { 1364 1365 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1366 } 1367 1368 int 1369 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1370 { 1371 1372 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1373 } 1374 1375 int 1376 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1377 { 1378 1379 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1380 } 1381 1382 int 1383 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1384 { 1385 struct vm_activate_cpu ac; 1386 int error; 1387 1388 bzero(&ac, sizeof(struct vm_activate_cpu)); 1389 ac.vcpuid = vcpu; 1390 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1391 return (error); 1392 } 1393 1394 int 1395 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1396 { 1397 struct vm_activate_cpu ac; 1398 int error; 1399 1400 bzero(&ac, sizeof(struct vm_activate_cpu)); 1401 ac.vcpuid = vcpu; 1402 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1403 return (error); 1404 } 1405 1406 int 1407 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1408 { 1409 struct vm_activate_cpu ac; 1410 int error; 1411 1412 bzero(&ac, sizeof(struct vm_activate_cpu)); 1413 ac.vcpuid = vcpu; 1414 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1415 return (error); 1416 } 1417 1418 int 1419 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1420 { 1421 struct vm_intinfo vmii; 1422 int error; 1423 1424 bzero(&vmii, sizeof(struct vm_intinfo)); 1425 vmii.vcpuid = vcpu; 1426 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1427 if (error == 0) { 1428 *info1 = vmii.info1; 1429 *info2 = vmii.info2; 1430 } 1431 return (error); 1432 } 1433 1434 int 1435 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1436 { 1437 struct vm_intinfo vmii; 1438 int error; 1439 1440 bzero(&vmii, sizeof(struct vm_intinfo)); 1441 vmii.vcpuid = vcpu; 1442 vmii.info1 = info1; 1443 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1444 return (error); 1445 } 1446 1447 int 1448 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1449 { 1450 struct vm_rtc_data rtcdata; 1451 int error; 1452 1453 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1454 rtcdata.offset = offset; 1455 rtcdata.value = value; 1456 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1457 return (error); 1458 } 1459 1460 int 1461 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1462 { 1463 struct vm_rtc_data rtcdata; 1464 int error; 1465 1466 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1467 rtcdata.offset = offset; 1468 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1469 if (error == 0) 1470 *retval = rtcdata.value; 1471 return (error); 1472 } 1473 1474 int 1475 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1476 { 1477 struct vm_rtc_time rtctime; 1478 int error; 1479 1480 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1481 rtctime.secs = secs; 1482 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1483 return (error); 1484 } 1485 1486 int 1487 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1488 { 1489 struct vm_rtc_time rtctime; 1490 int error; 1491 1492 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1493 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1494 if (error == 0) 1495 *secs = rtctime.secs; 1496 return (error); 1497 } 1498 1499 int 1500 vm_restart_instruction(void *arg, int vcpu) 1501 { 1502 struct vmctx *ctx = arg; 1503 1504 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1505 } 1506 1507 int 1508 vm_set_topology(struct vmctx *ctx, 1509 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1510 { 1511 struct vm_cpu_topology topology; 1512 1513 bzero(&topology, sizeof (struct vm_cpu_topology)); 1514 topology.sockets = sockets; 1515 topology.cores = cores; 1516 topology.threads = threads; 1517 topology.maxcpus = maxcpus; 1518 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1519 } 1520 1521 int 1522 vm_get_topology(struct vmctx *ctx, 1523 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1524 { 1525 struct vm_cpu_topology topology; 1526 int error; 1527 1528 bzero(&topology, sizeof (struct vm_cpu_topology)); 1529 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1530 if (error == 0) { 1531 *sockets = topology.sockets; 1532 *cores = topology.cores; 1533 *threads = topology.threads; 1534 *maxcpus = topology.maxcpus; 1535 } 1536 return (error); 1537 } 1538 1539 int 1540 vm_get_device_fd(struct vmctx *ctx) 1541 { 1542 1543 return (ctx->fd); 1544 } 1545 1546 const cap_ioctl_t * 1547 vm_get_ioctls(size_t *len) 1548 { 1549 cap_ioctl_t *cmds; 1550 /* keep in sync with machine/vmm_dev.h */ 1551 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1552 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1553 VM_MMAP_GETNEXT, VM_SET_REGISTER, VM_GET_REGISTER, 1554 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1555 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1556 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1557 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1558 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1559 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1560 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1561 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1562 VM_PPTDEV_MSIX, VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1563 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1564 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1565 VM_GLA2GPA_NOFAULT, 1566 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1567 VM_SET_INTINFO, VM_GET_INTINFO, 1568 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1569 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 1570 1571 if (len == NULL) { 1572 cmds = malloc(sizeof(vm_ioctl_cmds)); 1573 if (cmds == NULL) 1574 return (NULL); 1575 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1576 return (cmds); 1577 } 1578 1579 *len = nitems(vm_ioctl_cmds); 1580 return (NULL); 1581 } 1582