1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/sysctl.h> 36 #include <sys/ioctl.h> 37 #include <sys/linker.h> 38 #include <sys/mman.h> 39 #include <sys/module.h> 40 #include <sys/_iovec.h> 41 #include <sys/cpuset.h> 42 43 #include <x86/segments.h> 44 #include <machine/specialreg.h> 45 46 #include <errno.h> 47 #include <stdbool.h> 48 #include <stdio.h> 49 #include <stdlib.h> 50 #include <assert.h> 51 #include <string.h> 52 #include <fcntl.h> 53 #include <unistd.h> 54 55 #include <libutil.h> 56 57 #include <vm/vm.h> 58 #include <machine/vmm.h> 59 #include <machine/vmm_dev.h> 60 #include <machine/vmm_snapshot.h> 61 62 #include "vmmapi.h" 63 64 #define MB (1024 * 1024UL) 65 #define GB (1024 * 1024 * 1024UL) 66 67 /* 68 * Size of the guard region before and after the virtual address space 69 * mapping the guest physical memory. This must be a multiple of the 70 * superpage size for performance reasons. 71 */ 72 #define VM_MMAP_GUARD_SIZE (4 * MB) 73 74 #define PROT_RW (PROT_READ | PROT_WRITE) 75 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 76 77 struct vmctx { 78 int fd; 79 uint32_t lowmem_limit; 80 int memflags; 81 size_t lowmem; 82 size_t highmem; 83 char *baseaddr; 84 char *name; 85 }; 86 87 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 88 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 89 90 static int 91 vm_device_open(const char *name) 92 { 93 int fd, len; 94 char *vmfile; 95 96 len = strlen("/dev/vmm/") + strlen(name) + 1; 97 vmfile = malloc(len); 98 assert(vmfile != NULL); 99 snprintf(vmfile, len, "/dev/vmm/%s", name); 100 101 /* Open the device file */ 102 fd = open(vmfile, O_RDWR, 0); 103 104 free(vmfile); 105 return (fd); 106 } 107 108 int 109 vm_create(const char *name) 110 { 111 /* Try to load vmm(4) module before creating a guest. */ 112 if (modfind("vmm") < 0) 113 kldload("vmm"); 114 return (CREATE((char *)name)); 115 } 116 117 struct vmctx * 118 vm_open(const char *name) 119 { 120 struct vmctx *vm; 121 122 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 123 assert(vm != NULL); 124 125 vm->fd = -1; 126 vm->memflags = 0; 127 vm->lowmem_limit = 3 * GB; 128 vm->name = (char *)(vm + 1); 129 strcpy(vm->name, name); 130 131 if ((vm->fd = vm_device_open(vm->name)) < 0) 132 goto err; 133 134 return (vm); 135 err: 136 free(vm); 137 return (NULL); 138 } 139 140 void 141 vm_destroy(struct vmctx *vm) 142 { 143 assert(vm != NULL); 144 145 if (vm->fd >= 0) 146 close(vm->fd); 147 DESTROY(vm->name); 148 149 free(vm); 150 } 151 152 int 153 vm_parse_memsize(const char *optarg, size_t *ret_memsize) 154 { 155 char *endptr; 156 size_t optval; 157 int error; 158 159 optval = strtoul(optarg, &endptr, 0); 160 if (*optarg != '\0' && *endptr == '\0') { 161 /* 162 * For the sake of backward compatibility if the memory size 163 * specified on the command line is less than a megabyte then 164 * it is interpreted as being in units of MB. 165 */ 166 if (optval < MB) 167 optval *= MB; 168 *ret_memsize = optval; 169 error = 0; 170 } else 171 error = expand_number(optarg, ret_memsize); 172 173 return (error); 174 } 175 176 uint32_t 177 vm_get_lowmem_limit(struct vmctx *ctx) 178 { 179 180 return (ctx->lowmem_limit); 181 } 182 183 void 184 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 185 { 186 187 ctx->lowmem_limit = limit; 188 } 189 190 void 191 vm_set_memflags(struct vmctx *ctx, int flags) 192 { 193 194 ctx->memflags = flags; 195 } 196 197 int 198 vm_get_memflags(struct vmctx *ctx) 199 { 200 201 return (ctx->memflags); 202 } 203 204 /* 205 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 206 */ 207 int 208 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 209 size_t len, int prot) 210 { 211 struct vm_memmap memmap; 212 int error, flags; 213 214 memmap.gpa = gpa; 215 memmap.segid = segid; 216 memmap.segoff = off; 217 memmap.len = len; 218 memmap.prot = prot; 219 memmap.flags = 0; 220 221 if (ctx->memflags & VM_MEM_F_WIRED) 222 memmap.flags |= VM_MEMMAP_F_WIRED; 223 224 /* 225 * If this mapping already exists then don't create it again. This 226 * is the common case for SYSMEM mappings created by bhyveload(8). 227 */ 228 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 229 if (error == 0 && gpa == memmap.gpa) { 230 if (segid != memmap.segid || off != memmap.segoff || 231 prot != memmap.prot || flags != memmap.flags) { 232 errno = EEXIST; 233 return (-1); 234 } else { 235 return (0); 236 } 237 } 238 239 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 240 return (error); 241 } 242 243 int 244 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr, 245 size_t *lowmem_size, size_t *highmem_size) 246 { 247 248 *guest_baseaddr = ctx->baseaddr; 249 *lowmem_size = ctx->lowmem; 250 *highmem_size = ctx->highmem; 251 return (0); 252 } 253 254 int 255 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) 256 { 257 struct vm_munmap munmap; 258 int error; 259 260 munmap.gpa = gpa; 261 munmap.len = len; 262 263 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); 264 return (error); 265 } 266 267 int 268 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 269 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 270 { 271 struct vm_memmap memmap; 272 int error; 273 274 bzero(&memmap, sizeof(struct vm_memmap)); 275 memmap.gpa = *gpa; 276 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 277 if (error == 0) { 278 *gpa = memmap.gpa; 279 *segid = memmap.segid; 280 *segoff = memmap.segoff; 281 *len = memmap.len; 282 *prot = memmap.prot; 283 *flags = memmap.flags; 284 } 285 return (error); 286 } 287 288 /* 289 * Return 0 if the segments are identical and non-zero otherwise. 290 * 291 * This is slightly complicated by the fact that only device memory segments 292 * are named. 293 */ 294 static int 295 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 296 { 297 298 if (len == len2) { 299 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 300 return (0); 301 } 302 return (-1); 303 } 304 305 static int 306 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 307 { 308 struct vm_memseg memseg; 309 size_t n; 310 int error; 311 312 /* 313 * If the memory segment has already been created then just return. 314 * This is the usual case for the SYSMEM segment created by userspace 315 * loaders like bhyveload(8). 316 */ 317 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 318 sizeof(memseg.name)); 319 if (error) 320 return (error); 321 322 if (memseg.len != 0) { 323 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 324 errno = EINVAL; 325 return (-1); 326 } else { 327 return (0); 328 } 329 } 330 331 bzero(&memseg, sizeof(struct vm_memseg)); 332 memseg.segid = segid; 333 memseg.len = len; 334 if (name != NULL) { 335 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 336 if (n >= sizeof(memseg.name)) { 337 errno = ENAMETOOLONG; 338 return (-1); 339 } 340 } 341 342 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 343 return (error); 344 } 345 346 int 347 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 348 size_t bufsize) 349 { 350 struct vm_memseg memseg; 351 size_t n; 352 int error; 353 354 memseg.segid = segid; 355 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 356 if (error == 0) { 357 *lenp = memseg.len; 358 n = strlcpy(namebuf, memseg.name, bufsize); 359 if (n >= bufsize) { 360 errno = ENAMETOOLONG; 361 error = -1; 362 } 363 } 364 return (error); 365 } 366 367 static int 368 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 369 { 370 char *ptr; 371 int error, flags; 372 373 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 374 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 375 if (error) 376 return (error); 377 378 flags = MAP_SHARED | MAP_FIXED; 379 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 380 flags |= MAP_NOCORE; 381 382 /* mmap into the process address space on the host */ 383 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 384 if (ptr == MAP_FAILED) 385 return (-1); 386 387 return (0); 388 } 389 390 int 391 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 392 { 393 size_t objsize, len; 394 vm_paddr_t gpa; 395 char *baseaddr, *ptr; 396 int error; 397 398 assert(vms == VM_MMAP_ALL); 399 400 /* 401 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 402 * create another 'highmem' segment above 4GB for the remainder. 403 */ 404 if (memsize > ctx->lowmem_limit) { 405 ctx->lowmem = ctx->lowmem_limit; 406 ctx->highmem = memsize - ctx->lowmem_limit; 407 objsize = 4*GB + ctx->highmem; 408 } else { 409 ctx->lowmem = memsize; 410 ctx->highmem = 0; 411 objsize = ctx->lowmem; 412 } 413 414 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 415 if (error) 416 return (error); 417 418 /* 419 * Stake out a contiguous region covering the guest physical memory 420 * and the adjoining guard regions. 421 */ 422 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 423 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 424 if (ptr == MAP_FAILED) 425 return (-1); 426 427 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 428 if (ctx->highmem > 0) { 429 gpa = 4*GB; 430 len = ctx->highmem; 431 error = setup_memory_segment(ctx, gpa, len, baseaddr); 432 if (error) 433 return (error); 434 } 435 436 if (ctx->lowmem > 0) { 437 gpa = 0; 438 len = ctx->lowmem; 439 error = setup_memory_segment(ctx, gpa, len, baseaddr); 440 if (error) 441 return (error); 442 } 443 444 ctx->baseaddr = baseaddr; 445 446 return (0); 447 } 448 449 /* 450 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 451 * the lowmem or highmem regions. 452 * 453 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 454 * The instruction emulation code depends on this behavior. 455 */ 456 void * 457 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 458 { 459 460 if (ctx->lowmem > 0) { 461 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 462 gaddr + len <= ctx->lowmem) 463 return (ctx->baseaddr + gaddr); 464 } 465 466 if (ctx->highmem > 0) { 467 if (gaddr >= 4*GB) { 468 if (gaddr < 4*GB + ctx->highmem && 469 len <= ctx->highmem && 470 gaddr + len <= 4*GB + ctx->highmem) 471 return (ctx->baseaddr + gaddr); 472 } 473 } 474 475 return (NULL); 476 } 477 478 vm_paddr_t 479 vm_rev_map_gpa(struct vmctx *ctx, void *addr) 480 { 481 vm_paddr_t offaddr; 482 483 offaddr = (char *)addr - ctx->baseaddr; 484 485 if (ctx->lowmem > 0) 486 if (offaddr >= 0 && offaddr <= ctx->lowmem) 487 return (offaddr); 488 489 if (ctx->highmem > 0) 490 if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem) 491 return (offaddr); 492 493 return ((vm_paddr_t)-1); 494 } 495 496 /* TODO: maximum size for vmname */ 497 int 498 vm_get_name(struct vmctx *ctx, char *buf, size_t max_len) 499 { 500 501 if (strlcpy(buf, ctx->name, max_len) >= max_len) 502 return (EINVAL); 503 return (0); 504 } 505 506 size_t 507 vm_get_lowmem_size(struct vmctx *ctx) 508 { 509 510 return (ctx->lowmem); 511 } 512 513 size_t 514 vm_get_highmem_size(struct vmctx *ctx) 515 { 516 517 return (ctx->highmem); 518 } 519 520 void * 521 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 522 { 523 char pathname[MAXPATHLEN]; 524 size_t len2; 525 char *base, *ptr; 526 int fd, error, flags; 527 528 fd = -1; 529 ptr = MAP_FAILED; 530 if (name == NULL || strlen(name) == 0) { 531 errno = EINVAL; 532 goto done; 533 } 534 535 error = vm_alloc_memseg(ctx, segid, len, name); 536 if (error) 537 goto done; 538 539 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 540 strlcat(pathname, ctx->name, sizeof(pathname)); 541 strlcat(pathname, ".", sizeof(pathname)); 542 strlcat(pathname, name, sizeof(pathname)); 543 544 fd = open(pathname, O_RDWR); 545 if (fd < 0) 546 goto done; 547 548 /* 549 * Stake out a contiguous region covering the device memory and the 550 * adjoining guard regions. 551 */ 552 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 553 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 554 0); 555 if (base == MAP_FAILED) 556 goto done; 557 558 flags = MAP_SHARED | MAP_FIXED; 559 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 560 flags |= MAP_NOCORE; 561 562 /* mmap the devmem region in the host address space */ 563 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 564 done: 565 if (fd >= 0) 566 close(fd); 567 return (ptr); 568 } 569 570 int 571 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 572 uint64_t base, uint32_t limit, uint32_t access) 573 { 574 int error; 575 struct vm_seg_desc vmsegdesc; 576 577 bzero(&vmsegdesc, sizeof(vmsegdesc)); 578 vmsegdesc.cpuid = vcpu; 579 vmsegdesc.regnum = reg; 580 vmsegdesc.desc.base = base; 581 vmsegdesc.desc.limit = limit; 582 vmsegdesc.desc.access = access; 583 584 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 585 return (error); 586 } 587 588 int 589 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 590 uint64_t *base, uint32_t *limit, uint32_t *access) 591 { 592 int error; 593 struct vm_seg_desc vmsegdesc; 594 595 bzero(&vmsegdesc, sizeof(vmsegdesc)); 596 vmsegdesc.cpuid = vcpu; 597 vmsegdesc.regnum = reg; 598 599 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 600 if (error == 0) { 601 *base = vmsegdesc.desc.base; 602 *limit = vmsegdesc.desc.limit; 603 *access = vmsegdesc.desc.access; 604 } 605 return (error); 606 } 607 608 int 609 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 610 { 611 int error; 612 613 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 614 &seg_desc->access); 615 return (error); 616 } 617 618 int 619 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 620 { 621 int error; 622 struct vm_register vmreg; 623 624 bzero(&vmreg, sizeof(vmreg)); 625 vmreg.cpuid = vcpu; 626 vmreg.regnum = reg; 627 vmreg.regval = val; 628 629 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 630 return (error); 631 } 632 633 int 634 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 635 { 636 int error; 637 struct vm_register vmreg; 638 639 bzero(&vmreg, sizeof(vmreg)); 640 vmreg.cpuid = vcpu; 641 vmreg.regnum = reg; 642 643 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 644 *ret_val = vmreg.regval; 645 return (error); 646 } 647 648 int 649 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 650 const int *regnums, uint64_t *regvals) 651 { 652 int error; 653 struct vm_register_set vmregset; 654 655 bzero(&vmregset, sizeof(vmregset)); 656 vmregset.cpuid = vcpu; 657 vmregset.count = count; 658 vmregset.regnums = regnums; 659 vmregset.regvals = regvals; 660 661 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 662 return (error); 663 } 664 665 int 666 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 667 const int *regnums, uint64_t *regvals) 668 { 669 int error; 670 struct vm_register_set vmregset; 671 672 bzero(&vmregset, sizeof(vmregset)); 673 vmregset.cpuid = vcpu; 674 vmregset.count = count; 675 vmregset.regnums = regnums; 676 vmregset.regvals = regvals; 677 678 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 679 return (error); 680 } 681 682 int 683 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit) 684 { 685 int error; 686 struct vm_run vmrun; 687 688 bzero(&vmrun, sizeof(vmrun)); 689 vmrun.cpuid = vcpu; 690 691 error = ioctl(ctx->fd, VM_RUN, &vmrun); 692 bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit)); 693 return (error); 694 } 695 696 int 697 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 698 { 699 struct vm_suspend vmsuspend; 700 701 bzero(&vmsuspend, sizeof(vmsuspend)); 702 vmsuspend.how = how; 703 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 704 } 705 706 int 707 vm_reinit(struct vmctx *ctx) 708 { 709 710 return (ioctl(ctx->fd, VM_REINIT, 0)); 711 } 712 713 int 714 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 715 uint32_t errcode, int restart_instruction) 716 { 717 struct vm_exception exc; 718 719 exc.cpuid = vcpu; 720 exc.vector = vector; 721 exc.error_code = errcode; 722 exc.error_code_valid = errcode_valid; 723 exc.restart_instruction = restart_instruction; 724 725 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 726 } 727 728 int 729 vm_apicid2vcpu(struct vmctx *ctx, int apicid) 730 { 731 /* 732 * The apic id associated with the 'vcpu' has the same numerical value 733 * as the 'vcpu' itself. 734 */ 735 return (apicid); 736 } 737 738 int 739 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 740 { 741 struct vm_lapic_irq vmirq; 742 743 bzero(&vmirq, sizeof(vmirq)); 744 vmirq.cpuid = vcpu; 745 vmirq.vector = vector; 746 747 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 748 } 749 750 int 751 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 752 { 753 struct vm_lapic_irq vmirq; 754 755 bzero(&vmirq, sizeof(vmirq)); 756 vmirq.cpuid = vcpu; 757 vmirq.vector = vector; 758 759 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 760 } 761 762 int 763 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 764 { 765 struct vm_lapic_msi vmmsi; 766 767 bzero(&vmmsi, sizeof(vmmsi)); 768 vmmsi.addr = addr; 769 vmmsi.msg = msg; 770 771 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 772 } 773 774 int 775 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 776 { 777 struct vm_ioapic_irq ioapic_irq; 778 779 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 780 ioapic_irq.irq = irq; 781 782 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 783 } 784 785 int 786 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 787 { 788 struct vm_ioapic_irq ioapic_irq; 789 790 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 791 ioapic_irq.irq = irq; 792 793 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 794 } 795 796 int 797 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 798 { 799 struct vm_ioapic_irq ioapic_irq; 800 801 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 802 ioapic_irq.irq = irq; 803 804 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 805 } 806 807 int 808 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 809 { 810 811 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 812 } 813 814 int 815 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa, 816 bool write, int size, uint64_t *value) 817 { 818 struct vm_readwrite_kernemu_device irp = { 819 .vcpuid = vcpu, 820 .access_width = fls(size) - 1, 821 .gpa = gpa, 822 .value = write ? *value : ~0ul, 823 }; 824 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 825 int rc; 826 827 rc = ioctl(ctx->fd, cmd, &irp); 828 if (rc == 0 && !write) 829 *value = irp.value; 830 return (rc); 831 } 832 833 int 834 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 835 { 836 struct vm_isa_irq isa_irq; 837 838 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 839 isa_irq.atpic_irq = atpic_irq; 840 isa_irq.ioapic_irq = ioapic_irq; 841 842 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 843 } 844 845 int 846 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 847 { 848 struct vm_isa_irq isa_irq; 849 850 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 851 isa_irq.atpic_irq = atpic_irq; 852 isa_irq.ioapic_irq = ioapic_irq; 853 854 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 855 } 856 857 int 858 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 859 { 860 struct vm_isa_irq isa_irq; 861 862 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 863 isa_irq.atpic_irq = atpic_irq; 864 isa_irq.ioapic_irq = ioapic_irq; 865 866 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 867 } 868 869 int 870 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 871 enum vm_intr_trigger trigger) 872 { 873 struct vm_isa_irq_trigger isa_irq_trigger; 874 875 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 876 isa_irq_trigger.atpic_irq = atpic_irq; 877 isa_irq_trigger.trigger = trigger; 878 879 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 880 } 881 882 int 883 vm_inject_nmi(struct vmctx *ctx, int vcpu) 884 { 885 struct vm_nmi vmnmi; 886 887 bzero(&vmnmi, sizeof(vmnmi)); 888 vmnmi.cpuid = vcpu; 889 890 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 891 } 892 893 static const char *capstrmap[] = { 894 [VM_CAP_HALT_EXIT] = "hlt_exit", 895 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 896 [VM_CAP_PAUSE_EXIT] = "pause_exit", 897 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 898 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 899 [VM_CAP_BPT_EXIT] = "bpt_exit", 900 }; 901 902 int 903 vm_capability_name2type(const char *capname) 904 { 905 int i; 906 907 for (i = 0; i < nitems(capstrmap); i++) { 908 if (strcmp(capstrmap[i], capname) == 0) 909 return (i); 910 } 911 912 return (-1); 913 } 914 915 const char * 916 vm_capability_type2name(int type) 917 { 918 if (type >= 0 && type < nitems(capstrmap)) 919 return (capstrmap[type]); 920 921 return (NULL); 922 } 923 924 int 925 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 926 int *retval) 927 { 928 int error; 929 struct vm_capability vmcap; 930 931 bzero(&vmcap, sizeof(vmcap)); 932 vmcap.cpuid = vcpu; 933 vmcap.captype = cap; 934 935 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 936 *retval = vmcap.capval; 937 return (error); 938 } 939 940 int 941 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 942 { 943 struct vm_capability vmcap; 944 945 bzero(&vmcap, sizeof(vmcap)); 946 vmcap.cpuid = vcpu; 947 vmcap.captype = cap; 948 vmcap.capval = val; 949 950 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 951 } 952 953 int 954 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 955 { 956 struct vm_pptdev pptdev; 957 958 bzero(&pptdev, sizeof(pptdev)); 959 pptdev.bus = bus; 960 pptdev.slot = slot; 961 pptdev.func = func; 962 963 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 964 } 965 966 int 967 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 968 { 969 struct vm_pptdev pptdev; 970 971 bzero(&pptdev, sizeof(pptdev)); 972 pptdev.bus = bus; 973 pptdev.slot = slot; 974 pptdev.func = func; 975 976 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 977 } 978 979 int 980 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 981 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 982 { 983 struct vm_pptdev_mmio pptmmio; 984 985 bzero(&pptmmio, sizeof(pptmmio)); 986 pptmmio.bus = bus; 987 pptmmio.slot = slot; 988 pptmmio.func = func; 989 pptmmio.gpa = gpa; 990 pptmmio.len = len; 991 pptmmio.hpa = hpa; 992 993 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 994 } 995 996 int 997 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 998 vm_paddr_t gpa, size_t len) 999 { 1000 struct vm_pptdev_mmio pptmmio; 1001 1002 bzero(&pptmmio, sizeof(pptmmio)); 1003 pptmmio.bus = bus; 1004 pptmmio.slot = slot; 1005 pptmmio.func = func; 1006 pptmmio.gpa = gpa; 1007 pptmmio.len = len; 1008 1009 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1010 } 1011 1012 int 1013 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1014 uint64_t addr, uint64_t msg, int numvec) 1015 { 1016 struct vm_pptdev_msi pptmsi; 1017 1018 bzero(&pptmsi, sizeof(pptmsi)); 1019 pptmsi.vcpu = vcpu; 1020 pptmsi.bus = bus; 1021 pptmsi.slot = slot; 1022 pptmsi.func = func; 1023 pptmsi.msg = msg; 1024 pptmsi.addr = addr; 1025 pptmsi.numvec = numvec; 1026 1027 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1028 } 1029 1030 int 1031 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1032 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1033 { 1034 struct vm_pptdev_msix pptmsix; 1035 1036 bzero(&pptmsix, sizeof(pptmsix)); 1037 pptmsix.vcpu = vcpu; 1038 pptmsix.bus = bus; 1039 pptmsix.slot = slot; 1040 pptmsix.func = func; 1041 pptmsix.idx = idx; 1042 pptmsix.msg = msg; 1043 pptmsix.addr = addr; 1044 pptmsix.vector_control = vector_control; 1045 1046 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1047 } 1048 1049 int 1050 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func) 1051 { 1052 struct vm_pptdev ppt; 1053 1054 bzero(&ppt, sizeof(ppt)); 1055 ppt.bus = bus; 1056 ppt.slot = slot; 1057 ppt.func = func; 1058 1059 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt); 1060 } 1061 1062 uint64_t * 1063 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 1064 int *ret_entries) 1065 { 1066 int error; 1067 1068 static struct vm_stats vmstats; 1069 1070 vmstats.cpuid = vcpu; 1071 1072 error = ioctl(ctx->fd, VM_STATS, &vmstats); 1073 if (error == 0) { 1074 if (ret_entries) 1075 *ret_entries = vmstats.num_entries; 1076 if (ret_tv) 1077 *ret_tv = vmstats.tv; 1078 return (vmstats.statbuf); 1079 } else 1080 return (NULL); 1081 } 1082 1083 const char * 1084 vm_get_stat_desc(struct vmctx *ctx, int index) 1085 { 1086 static struct vm_stat_desc statdesc; 1087 1088 statdesc.index = index; 1089 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1090 return (statdesc.desc); 1091 else 1092 return (NULL); 1093 } 1094 1095 int 1096 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1097 { 1098 int error; 1099 struct vm_x2apic x2apic; 1100 1101 bzero(&x2apic, sizeof(x2apic)); 1102 x2apic.cpuid = vcpu; 1103 1104 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1105 *state = x2apic.state; 1106 return (error); 1107 } 1108 1109 int 1110 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1111 { 1112 int error; 1113 struct vm_x2apic x2apic; 1114 1115 bzero(&x2apic, sizeof(x2apic)); 1116 x2apic.cpuid = vcpu; 1117 x2apic.state = state; 1118 1119 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1120 1121 return (error); 1122 } 1123 1124 /* 1125 * From Intel Vol 3a: 1126 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1127 */ 1128 int 1129 vcpu_reset(struct vmctx *vmctx, int vcpu) 1130 { 1131 int error; 1132 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1133 uint32_t desc_access, desc_limit; 1134 uint16_t sel; 1135 1136 zero = 0; 1137 1138 rflags = 0x2; 1139 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1140 if (error) 1141 goto done; 1142 1143 rip = 0xfff0; 1144 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1145 goto done; 1146 1147 cr0 = CR0_NE; 1148 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1149 goto done; 1150 1151 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1152 goto done; 1153 1154 cr4 = 0; 1155 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1156 goto done; 1157 1158 /* 1159 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1160 */ 1161 desc_base = 0xffff0000; 1162 desc_limit = 0xffff; 1163 desc_access = 0x0093; 1164 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1165 desc_base, desc_limit, desc_access); 1166 if (error) 1167 goto done; 1168 1169 sel = 0xf000; 1170 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1171 goto done; 1172 1173 /* 1174 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1175 */ 1176 desc_base = 0; 1177 desc_limit = 0xffff; 1178 desc_access = 0x0093; 1179 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1180 desc_base, desc_limit, desc_access); 1181 if (error) 1182 goto done; 1183 1184 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1185 desc_base, desc_limit, desc_access); 1186 if (error) 1187 goto done; 1188 1189 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1190 desc_base, desc_limit, desc_access); 1191 if (error) 1192 goto done; 1193 1194 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1195 desc_base, desc_limit, desc_access); 1196 if (error) 1197 goto done; 1198 1199 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1200 desc_base, desc_limit, desc_access); 1201 if (error) 1202 goto done; 1203 1204 sel = 0; 1205 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1206 goto done; 1207 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1208 goto done; 1209 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1210 goto done; 1211 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1212 goto done; 1213 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1214 goto done; 1215 1216 /* General purpose registers */ 1217 rdx = 0xf00; 1218 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1219 goto done; 1220 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1221 goto done; 1222 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1223 goto done; 1224 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1225 goto done; 1226 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1227 goto done; 1228 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1229 goto done; 1230 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1231 goto done; 1232 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1233 goto done; 1234 1235 /* GDTR, IDTR */ 1236 desc_base = 0; 1237 desc_limit = 0xffff; 1238 desc_access = 0; 1239 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1240 desc_base, desc_limit, desc_access); 1241 if (error != 0) 1242 goto done; 1243 1244 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1245 desc_base, desc_limit, desc_access); 1246 if (error != 0) 1247 goto done; 1248 1249 /* TR */ 1250 desc_base = 0; 1251 desc_limit = 0xffff; 1252 desc_access = 0x0000008b; 1253 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1254 if (error) 1255 goto done; 1256 1257 sel = 0; 1258 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1259 goto done; 1260 1261 /* LDTR */ 1262 desc_base = 0; 1263 desc_limit = 0xffff; 1264 desc_access = 0x00000082; 1265 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1266 desc_limit, desc_access); 1267 if (error) 1268 goto done; 1269 1270 sel = 0; 1271 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1272 goto done; 1273 1274 /* XXX cr2, debug registers */ 1275 1276 error = 0; 1277 done: 1278 return (error); 1279 } 1280 1281 int 1282 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1283 { 1284 int error, i; 1285 struct vm_gpa_pte gpapte; 1286 1287 bzero(&gpapte, sizeof(gpapte)); 1288 gpapte.gpa = gpa; 1289 1290 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1291 1292 if (error == 0) { 1293 *num = gpapte.ptenum; 1294 for (i = 0; i < gpapte.ptenum; i++) 1295 pte[i] = gpapte.pte[i]; 1296 } 1297 1298 return (error); 1299 } 1300 1301 int 1302 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1303 { 1304 int error; 1305 struct vm_hpet_cap cap; 1306 1307 bzero(&cap, sizeof(struct vm_hpet_cap)); 1308 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1309 if (capabilities != NULL) 1310 *capabilities = cap.capabilities; 1311 return (error); 1312 } 1313 1314 int 1315 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1316 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1317 { 1318 struct vm_gla2gpa gg; 1319 int error; 1320 1321 bzero(&gg, sizeof(struct vm_gla2gpa)); 1322 gg.vcpuid = vcpu; 1323 gg.prot = prot; 1324 gg.gla = gla; 1325 gg.paging = *paging; 1326 1327 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1328 if (error == 0) { 1329 *fault = gg.fault; 1330 *gpa = gg.gpa; 1331 } 1332 return (error); 1333 } 1334 1335 int 1336 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1337 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1338 { 1339 struct vm_gla2gpa gg; 1340 int error; 1341 1342 bzero(&gg, sizeof(struct vm_gla2gpa)); 1343 gg.vcpuid = vcpu; 1344 gg.prot = prot; 1345 gg.gla = gla; 1346 gg.paging = *paging; 1347 1348 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1349 if (error == 0) { 1350 *fault = gg.fault; 1351 *gpa = gg.gpa; 1352 } 1353 return (error); 1354 } 1355 1356 #ifndef min 1357 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1358 #endif 1359 1360 int 1361 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1362 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1363 int *fault) 1364 { 1365 void *va; 1366 uint64_t gpa; 1367 int error, i, n, off; 1368 1369 for (i = 0; i < iovcnt; i++) { 1370 iov[i].iov_base = 0; 1371 iov[i].iov_len = 0; 1372 } 1373 1374 while (len) { 1375 assert(iovcnt > 0); 1376 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1377 if (error || *fault) 1378 return (error); 1379 1380 off = gpa & PAGE_MASK; 1381 n = min(len, PAGE_SIZE - off); 1382 1383 va = vm_map_gpa(ctx, gpa, n); 1384 if (va == NULL) 1385 return (EFAULT); 1386 1387 iov->iov_base = va; 1388 iov->iov_len = n; 1389 iov++; 1390 iovcnt--; 1391 1392 gla += n; 1393 len -= n; 1394 } 1395 return (0); 1396 } 1397 1398 void 1399 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt) 1400 { 1401 1402 return; 1403 } 1404 1405 void 1406 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len) 1407 { 1408 const char *src; 1409 char *dst; 1410 size_t n; 1411 1412 dst = vp; 1413 while (len) { 1414 assert(iov->iov_len); 1415 n = min(len, iov->iov_len); 1416 src = iov->iov_base; 1417 bcopy(src, dst, n); 1418 1419 iov++; 1420 dst += n; 1421 len -= n; 1422 } 1423 } 1424 1425 void 1426 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov, 1427 size_t len) 1428 { 1429 const char *src; 1430 char *dst; 1431 size_t n; 1432 1433 src = vp; 1434 while (len) { 1435 assert(iov->iov_len); 1436 n = min(len, iov->iov_len); 1437 dst = iov->iov_base; 1438 bcopy(src, dst, n); 1439 1440 iov++; 1441 src += n; 1442 len -= n; 1443 } 1444 } 1445 1446 static int 1447 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1448 { 1449 struct vm_cpuset vm_cpuset; 1450 int error; 1451 1452 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1453 vm_cpuset.which = which; 1454 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1455 vm_cpuset.cpus = cpus; 1456 1457 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1458 return (error); 1459 } 1460 1461 int 1462 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1463 { 1464 1465 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1466 } 1467 1468 int 1469 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1470 { 1471 1472 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1473 } 1474 1475 int 1476 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1477 { 1478 1479 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1480 } 1481 1482 int 1483 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1484 { 1485 struct vm_activate_cpu ac; 1486 int error; 1487 1488 bzero(&ac, sizeof(struct vm_activate_cpu)); 1489 ac.vcpuid = vcpu; 1490 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1491 return (error); 1492 } 1493 1494 int 1495 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1496 { 1497 struct vm_activate_cpu ac; 1498 int error; 1499 1500 bzero(&ac, sizeof(struct vm_activate_cpu)); 1501 ac.vcpuid = vcpu; 1502 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1503 return (error); 1504 } 1505 1506 int 1507 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1508 { 1509 struct vm_activate_cpu ac; 1510 int error; 1511 1512 bzero(&ac, sizeof(struct vm_activate_cpu)); 1513 ac.vcpuid = vcpu; 1514 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1515 return (error); 1516 } 1517 1518 int 1519 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1520 { 1521 struct vm_intinfo vmii; 1522 int error; 1523 1524 bzero(&vmii, sizeof(struct vm_intinfo)); 1525 vmii.vcpuid = vcpu; 1526 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1527 if (error == 0) { 1528 *info1 = vmii.info1; 1529 *info2 = vmii.info2; 1530 } 1531 return (error); 1532 } 1533 1534 int 1535 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1536 { 1537 struct vm_intinfo vmii; 1538 int error; 1539 1540 bzero(&vmii, sizeof(struct vm_intinfo)); 1541 vmii.vcpuid = vcpu; 1542 vmii.info1 = info1; 1543 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1544 return (error); 1545 } 1546 1547 int 1548 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1549 { 1550 struct vm_rtc_data rtcdata; 1551 int error; 1552 1553 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1554 rtcdata.offset = offset; 1555 rtcdata.value = value; 1556 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1557 return (error); 1558 } 1559 1560 int 1561 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1562 { 1563 struct vm_rtc_data rtcdata; 1564 int error; 1565 1566 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1567 rtcdata.offset = offset; 1568 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1569 if (error == 0) 1570 *retval = rtcdata.value; 1571 return (error); 1572 } 1573 1574 int 1575 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1576 { 1577 struct vm_rtc_time rtctime; 1578 int error; 1579 1580 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1581 rtctime.secs = secs; 1582 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1583 return (error); 1584 } 1585 1586 int 1587 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1588 { 1589 struct vm_rtc_time rtctime; 1590 int error; 1591 1592 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1593 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1594 if (error == 0) 1595 *secs = rtctime.secs; 1596 return (error); 1597 } 1598 1599 int 1600 vm_restart_instruction(void *arg, int vcpu) 1601 { 1602 struct vmctx *ctx = arg; 1603 1604 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1605 } 1606 1607 int 1608 vm_snapshot_req(struct vm_snapshot_meta *meta) 1609 { 1610 1611 if (ioctl(meta->ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) { 1612 #ifdef SNAPSHOT_DEBUG 1613 fprintf(stderr, "%s: snapshot failed for %s: %d\r\n", 1614 __func__, meta->dev_name, errno); 1615 #endif 1616 return (-1); 1617 } 1618 return (0); 1619 } 1620 1621 int 1622 vm_restore_time(struct vmctx *ctx) 1623 { 1624 int dummy; 1625 1626 dummy = 0; 1627 return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy)); 1628 } 1629 1630 int 1631 vm_set_topology(struct vmctx *ctx, 1632 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1633 { 1634 struct vm_cpu_topology topology; 1635 1636 bzero(&topology, sizeof (struct vm_cpu_topology)); 1637 topology.sockets = sockets; 1638 topology.cores = cores; 1639 topology.threads = threads; 1640 topology.maxcpus = maxcpus; 1641 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1642 } 1643 1644 int 1645 vm_get_topology(struct vmctx *ctx, 1646 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1647 { 1648 struct vm_cpu_topology topology; 1649 int error; 1650 1651 bzero(&topology, sizeof (struct vm_cpu_topology)); 1652 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1653 if (error == 0) { 1654 *sockets = topology.sockets; 1655 *cores = topology.cores; 1656 *threads = topology.threads; 1657 *maxcpus = topology.maxcpus; 1658 } 1659 return (error); 1660 } 1661 1662 int 1663 vm_get_device_fd(struct vmctx *ctx) 1664 { 1665 1666 return (ctx->fd); 1667 } 1668 1669 const cap_ioctl_t * 1670 vm_get_ioctls(size_t *len) 1671 { 1672 cap_ioctl_t *cmds; 1673 /* keep in sync with machine/vmm_dev.h */ 1674 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1675 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1676 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER, 1677 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1678 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1679 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 1680 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1681 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1682 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1683 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1684 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1685 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1686 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX, 1687 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1688 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1689 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1690 VM_GLA2GPA_NOFAULT, 1691 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1692 VM_SET_INTINFO, VM_GET_INTINFO, 1693 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1694 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 1695 1696 if (len == NULL) { 1697 cmds = malloc(sizeof(vm_ioctl_cmds)); 1698 if (cmds == NULL) 1699 return (NULL); 1700 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1701 return (cmds); 1702 } 1703 1704 *len = nitems(vm_ioctl_cmds); 1705 return (NULL); 1706 } 1707