1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/sysctl.h> 36 #include <sys/ioctl.h> 37 #include <sys/linker.h> 38 #include <sys/mman.h> 39 #include <sys/module.h> 40 #include <sys/_iovec.h> 41 #include <sys/cpuset.h> 42 43 #include <x86/segments.h> 44 #include <machine/specialreg.h> 45 46 #include <errno.h> 47 #include <stdbool.h> 48 #include <stdio.h> 49 #include <stdlib.h> 50 #include <assert.h> 51 #include <string.h> 52 #include <fcntl.h> 53 #include <unistd.h> 54 55 #include <libutil.h> 56 57 #include <vm/vm.h> 58 #include <machine/vmm.h> 59 #include <machine/vmm_dev.h> 60 #include <machine/vmm_snapshot.h> 61 62 #include "vmmapi.h" 63 64 #define MB (1024 * 1024UL) 65 #define GB (1024 * 1024 * 1024UL) 66 67 /* 68 * Size of the guard region before and after the virtual address space 69 * mapping the guest physical memory. This must be a multiple of the 70 * superpage size for performance reasons. 71 */ 72 #define VM_MMAP_GUARD_SIZE (4 * MB) 73 74 #define PROT_RW (PROT_READ | PROT_WRITE) 75 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 76 77 struct vmctx { 78 int fd; 79 uint32_t lowmem_limit; 80 int memflags; 81 size_t lowmem; 82 size_t highmem; 83 char *baseaddr; 84 char *name; 85 }; 86 87 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 88 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 89 90 static int 91 vm_device_open(const char *name) 92 { 93 int fd, len; 94 char *vmfile; 95 96 len = strlen("/dev/vmm/") + strlen(name) + 1; 97 vmfile = malloc(len); 98 assert(vmfile != NULL); 99 snprintf(vmfile, len, "/dev/vmm/%s", name); 100 101 /* Open the device file */ 102 fd = open(vmfile, O_RDWR, 0); 103 104 free(vmfile); 105 return (fd); 106 } 107 108 int 109 vm_create(const char *name) 110 { 111 /* Try to load vmm(4) module before creating a guest. */ 112 if (modfind("vmm") < 0) 113 kldload("vmm"); 114 return (CREATE(name)); 115 } 116 117 struct vmctx * 118 vm_open(const char *name) 119 { 120 struct vmctx *vm; 121 int saved_errno; 122 123 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 124 assert(vm != NULL); 125 126 vm->fd = -1; 127 vm->memflags = 0; 128 vm->lowmem_limit = 3 * GB; 129 vm->name = (char *)(vm + 1); 130 strcpy(vm->name, name); 131 132 if ((vm->fd = vm_device_open(vm->name)) < 0) 133 goto err; 134 135 return (vm); 136 err: 137 saved_errno = errno; 138 free(vm); 139 errno = saved_errno; 140 return (NULL); 141 } 142 143 void 144 vm_destroy(struct vmctx *vm) 145 { 146 assert(vm != NULL); 147 148 if (vm->fd >= 0) 149 close(vm->fd); 150 DESTROY(vm->name); 151 152 free(vm); 153 } 154 155 int 156 vm_parse_memsize(const char *opt, size_t *ret_memsize) 157 { 158 char *endptr; 159 size_t optval; 160 int error; 161 162 optval = strtoul(opt, &endptr, 0); 163 if (*opt != '\0' && *endptr == '\0') { 164 /* 165 * For the sake of backward compatibility if the memory size 166 * specified on the command line is less than a megabyte then 167 * it is interpreted as being in units of MB. 168 */ 169 if (optval < MB) 170 optval *= MB; 171 *ret_memsize = optval; 172 error = 0; 173 } else 174 error = expand_number(opt, ret_memsize); 175 176 return (error); 177 } 178 179 uint32_t 180 vm_get_lowmem_limit(struct vmctx *ctx) 181 { 182 183 return (ctx->lowmem_limit); 184 } 185 186 void 187 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 188 { 189 190 ctx->lowmem_limit = limit; 191 } 192 193 void 194 vm_set_memflags(struct vmctx *ctx, int flags) 195 { 196 197 ctx->memflags = flags; 198 } 199 200 int 201 vm_get_memflags(struct vmctx *ctx) 202 { 203 204 return (ctx->memflags); 205 } 206 207 /* 208 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 209 */ 210 int 211 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 212 size_t len, int prot) 213 { 214 struct vm_memmap memmap; 215 int error, flags; 216 217 memmap.gpa = gpa; 218 memmap.segid = segid; 219 memmap.segoff = off; 220 memmap.len = len; 221 memmap.prot = prot; 222 memmap.flags = 0; 223 224 if (ctx->memflags & VM_MEM_F_WIRED) 225 memmap.flags |= VM_MEMMAP_F_WIRED; 226 227 /* 228 * If this mapping already exists then don't create it again. This 229 * is the common case for SYSMEM mappings created by bhyveload(8). 230 */ 231 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 232 if (error == 0 && gpa == memmap.gpa) { 233 if (segid != memmap.segid || off != memmap.segoff || 234 prot != memmap.prot || flags != memmap.flags) { 235 errno = EEXIST; 236 return (-1); 237 } else { 238 return (0); 239 } 240 } 241 242 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 243 return (error); 244 } 245 246 int 247 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr, 248 size_t *lowmem_size, size_t *highmem_size) 249 { 250 251 *guest_baseaddr = ctx->baseaddr; 252 *lowmem_size = ctx->lowmem; 253 *highmem_size = ctx->highmem; 254 return (0); 255 } 256 257 int 258 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) 259 { 260 struct vm_munmap munmap; 261 int error; 262 263 munmap.gpa = gpa; 264 munmap.len = len; 265 266 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); 267 return (error); 268 } 269 270 int 271 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 272 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 273 { 274 struct vm_memmap memmap; 275 int error; 276 277 bzero(&memmap, sizeof(struct vm_memmap)); 278 memmap.gpa = *gpa; 279 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 280 if (error == 0) { 281 *gpa = memmap.gpa; 282 *segid = memmap.segid; 283 *segoff = memmap.segoff; 284 *len = memmap.len; 285 *prot = memmap.prot; 286 *flags = memmap.flags; 287 } 288 return (error); 289 } 290 291 /* 292 * Return 0 if the segments are identical and non-zero otherwise. 293 * 294 * This is slightly complicated by the fact that only device memory segments 295 * are named. 296 */ 297 static int 298 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 299 { 300 301 if (len == len2) { 302 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 303 return (0); 304 } 305 return (-1); 306 } 307 308 static int 309 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 310 { 311 struct vm_memseg memseg; 312 size_t n; 313 int error; 314 315 /* 316 * If the memory segment has already been created then just return. 317 * This is the usual case for the SYSMEM segment created by userspace 318 * loaders like bhyveload(8). 319 */ 320 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 321 sizeof(memseg.name)); 322 if (error) 323 return (error); 324 325 if (memseg.len != 0) { 326 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 327 errno = EINVAL; 328 return (-1); 329 } else { 330 return (0); 331 } 332 } 333 334 bzero(&memseg, sizeof(struct vm_memseg)); 335 memseg.segid = segid; 336 memseg.len = len; 337 if (name != NULL) { 338 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 339 if (n >= sizeof(memseg.name)) { 340 errno = ENAMETOOLONG; 341 return (-1); 342 } 343 } 344 345 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 346 return (error); 347 } 348 349 int 350 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 351 size_t bufsize) 352 { 353 struct vm_memseg memseg; 354 size_t n; 355 int error; 356 357 memseg.segid = segid; 358 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 359 if (error == 0) { 360 *lenp = memseg.len; 361 n = strlcpy(namebuf, memseg.name, bufsize); 362 if (n >= bufsize) { 363 errno = ENAMETOOLONG; 364 error = -1; 365 } 366 } 367 return (error); 368 } 369 370 static int 371 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 372 { 373 char *ptr; 374 int error, flags; 375 376 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 377 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 378 if (error) 379 return (error); 380 381 flags = MAP_SHARED | MAP_FIXED; 382 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 383 flags |= MAP_NOCORE; 384 385 /* mmap into the process address space on the host */ 386 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 387 if (ptr == MAP_FAILED) 388 return (-1); 389 390 return (0); 391 } 392 393 int 394 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 395 { 396 size_t objsize, len; 397 vm_paddr_t gpa; 398 char *baseaddr, *ptr; 399 int error; 400 401 assert(vms == VM_MMAP_ALL); 402 403 /* 404 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 405 * create another 'highmem' segment above 4GB for the remainder. 406 */ 407 if (memsize > ctx->lowmem_limit) { 408 ctx->lowmem = ctx->lowmem_limit; 409 ctx->highmem = memsize - ctx->lowmem_limit; 410 objsize = 4*GB + ctx->highmem; 411 } else { 412 ctx->lowmem = memsize; 413 ctx->highmem = 0; 414 objsize = ctx->lowmem; 415 } 416 417 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 418 if (error) 419 return (error); 420 421 /* 422 * Stake out a contiguous region covering the guest physical memory 423 * and the adjoining guard regions. 424 */ 425 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 426 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 427 if (ptr == MAP_FAILED) 428 return (-1); 429 430 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 431 if (ctx->highmem > 0) { 432 gpa = 4*GB; 433 len = ctx->highmem; 434 error = setup_memory_segment(ctx, gpa, len, baseaddr); 435 if (error) 436 return (error); 437 } 438 439 if (ctx->lowmem > 0) { 440 gpa = 0; 441 len = ctx->lowmem; 442 error = setup_memory_segment(ctx, gpa, len, baseaddr); 443 if (error) 444 return (error); 445 } 446 447 ctx->baseaddr = baseaddr; 448 449 return (0); 450 } 451 452 /* 453 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 454 * the lowmem or highmem regions. 455 * 456 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 457 * The instruction emulation code depends on this behavior. 458 */ 459 void * 460 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 461 { 462 463 if (ctx->lowmem > 0) { 464 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 465 gaddr + len <= ctx->lowmem) 466 return (ctx->baseaddr + gaddr); 467 } 468 469 if (ctx->highmem > 0) { 470 if (gaddr >= 4*GB) { 471 if (gaddr < 4*GB + ctx->highmem && 472 len <= ctx->highmem && 473 gaddr + len <= 4*GB + ctx->highmem) 474 return (ctx->baseaddr + gaddr); 475 } 476 } 477 478 return (NULL); 479 } 480 481 vm_paddr_t 482 vm_rev_map_gpa(struct vmctx *ctx, void *addr) 483 { 484 vm_paddr_t offaddr; 485 486 offaddr = (char *)addr - ctx->baseaddr; 487 488 if (ctx->lowmem > 0) 489 if (offaddr <= ctx->lowmem) 490 return (offaddr); 491 492 if (ctx->highmem > 0) 493 if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem) 494 return (offaddr); 495 496 return ((vm_paddr_t)-1); 497 } 498 499 const char * 500 vm_get_name(struct vmctx *ctx) 501 { 502 503 return (ctx->name); 504 } 505 506 size_t 507 vm_get_lowmem_size(struct vmctx *ctx) 508 { 509 510 return (ctx->lowmem); 511 } 512 513 size_t 514 vm_get_highmem_size(struct vmctx *ctx) 515 { 516 517 return (ctx->highmem); 518 } 519 520 void * 521 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 522 { 523 char pathname[MAXPATHLEN]; 524 size_t len2; 525 char *base, *ptr; 526 int fd, error, flags; 527 528 fd = -1; 529 ptr = MAP_FAILED; 530 if (name == NULL || strlen(name) == 0) { 531 errno = EINVAL; 532 goto done; 533 } 534 535 error = vm_alloc_memseg(ctx, segid, len, name); 536 if (error) 537 goto done; 538 539 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 540 strlcat(pathname, ctx->name, sizeof(pathname)); 541 strlcat(pathname, ".", sizeof(pathname)); 542 strlcat(pathname, name, sizeof(pathname)); 543 544 fd = open(pathname, O_RDWR); 545 if (fd < 0) 546 goto done; 547 548 /* 549 * Stake out a contiguous region covering the device memory and the 550 * adjoining guard regions. 551 */ 552 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 553 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 554 0); 555 if (base == MAP_FAILED) 556 goto done; 557 558 flags = MAP_SHARED | MAP_FIXED; 559 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 560 flags |= MAP_NOCORE; 561 562 /* mmap the devmem region in the host address space */ 563 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 564 done: 565 if (fd >= 0) 566 close(fd); 567 return (ptr); 568 } 569 570 int 571 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 572 uint64_t base, uint32_t limit, uint32_t access) 573 { 574 int error; 575 struct vm_seg_desc vmsegdesc; 576 577 bzero(&vmsegdesc, sizeof(vmsegdesc)); 578 vmsegdesc.cpuid = vcpu; 579 vmsegdesc.regnum = reg; 580 vmsegdesc.desc.base = base; 581 vmsegdesc.desc.limit = limit; 582 vmsegdesc.desc.access = access; 583 584 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 585 return (error); 586 } 587 588 int 589 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 590 uint64_t *base, uint32_t *limit, uint32_t *access) 591 { 592 int error; 593 struct vm_seg_desc vmsegdesc; 594 595 bzero(&vmsegdesc, sizeof(vmsegdesc)); 596 vmsegdesc.cpuid = vcpu; 597 vmsegdesc.regnum = reg; 598 599 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 600 if (error == 0) { 601 *base = vmsegdesc.desc.base; 602 *limit = vmsegdesc.desc.limit; 603 *access = vmsegdesc.desc.access; 604 } 605 return (error); 606 } 607 608 int 609 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 610 { 611 int error; 612 613 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 614 &seg_desc->access); 615 return (error); 616 } 617 618 int 619 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 620 { 621 int error; 622 struct vm_register vmreg; 623 624 bzero(&vmreg, sizeof(vmreg)); 625 vmreg.cpuid = vcpu; 626 vmreg.regnum = reg; 627 vmreg.regval = val; 628 629 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 630 return (error); 631 } 632 633 int 634 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 635 { 636 int error; 637 struct vm_register vmreg; 638 639 bzero(&vmreg, sizeof(vmreg)); 640 vmreg.cpuid = vcpu; 641 vmreg.regnum = reg; 642 643 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 644 *ret_val = vmreg.regval; 645 return (error); 646 } 647 648 int 649 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 650 const int *regnums, uint64_t *regvals) 651 { 652 int error; 653 struct vm_register_set vmregset; 654 655 bzero(&vmregset, sizeof(vmregset)); 656 vmregset.cpuid = vcpu; 657 vmregset.count = count; 658 vmregset.regnums = regnums; 659 vmregset.regvals = regvals; 660 661 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 662 return (error); 663 } 664 665 int 666 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 667 const int *regnums, uint64_t *regvals) 668 { 669 int error; 670 struct vm_register_set vmregset; 671 672 bzero(&vmregset, sizeof(vmregset)); 673 vmregset.cpuid = vcpu; 674 vmregset.count = count; 675 vmregset.regnums = regnums; 676 vmregset.regvals = regvals; 677 678 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 679 return (error); 680 } 681 682 int 683 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit) 684 { 685 int error; 686 struct vm_run vmrun; 687 688 bzero(&vmrun, sizeof(vmrun)); 689 vmrun.cpuid = vcpu; 690 691 error = ioctl(ctx->fd, VM_RUN, &vmrun); 692 bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit)); 693 return (error); 694 } 695 696 int 697 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 698 { 699 struct vm_suspend vmsuspend; 700 701 bzero(&vmsuspend, sizeof(vmsuspend)); 702 vmsuspend.how = how; 703 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 704 } 705 706 int 707 vm_reinit(struct vmctx *ctx) 708 { 709 710 return (ioctl(ctx->fd, VM_REINIT, 0)); 711 } 712 713 int 714 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 715 uint32_t errcode, int restart_instruction) 716 { 717 struct vm_exception exc; 718 719 exc.cpuid = vcpu; 720 exc.vector = vector; 721 exc.error_code = errcode; 722 exc.error_code_valid = errcode_valid; 723 exc.restart_instruction = restart_instruction; 724 725 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 726 } 727 728 int 729 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid) 730 { 731 /* 732 * The apic id associated with the 'vcpu' has the same numerical value 733 * as the 'vcpu' itself. 734 */ 735 return (apicid); 736 } 737 738 int 739 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 740 { 741 struct vm_lapic_irq vmirq; 742 743 bzero(&vmirq, sizeof(vmirq)); 744 vmirq.cpuid = vcpu; 745 vmirq.vector = vector; 746 747 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 748 } 749 750 int 751 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 752 { 753 struct vm_lapic_irq vmirq; 754 755 bzero(&vmirq, sizeof(vmirq)); 756 vmirq.cpuid = vcpu; 757 vmirq.vector = vector; 758 759 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 760 } 761 762 int 763 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 764 { 765 struct vm_lapic_msi vmmsi; 766 767 bzero(&vmmsi, sizeof(vmmsi)); 768 vmmsi.addr = addr; 769 vmmsi.msg = msg; 770 771 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 772 } 773 774 int 775 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 776 { 777 struct vm_ioapic_irq ioapic_irq; 778 779 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 780 ioapic_irq.irq = irq; 781 782 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 783 } 784 785 int 786 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 787 { 788 struct vm_ioapic_irq ioapic_irq; 789 790 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 791 ioapic_irq.irq = irq; 792 793 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 794 } 795 796 int 797 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 798 { 799 struct vm_ioapic_irq ioapic_irq; 800 801 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 802 ioapic_irq.irq = irq; 803 804 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 805 } 806 807 int 808 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 809 { 810 811 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 812 } 813 814 int 815 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa, 816 bool write, int size, uint64_t *value) 817 { 818 struct vm_readwrite_kernemu_device irp = { 819 .vcpuid = vcpu, 820 .access_width = fls(size) - 1, 821 .gpa = gpa, 822 .value = write ? *value : ~0ul, 823 }; 824 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 825 int rc; 826 827 rc = ioctl(ctx->fd, cmd, &irp); 828 if (rc == 0 && !write) 829 *value = irp.value; 830 return (rc); 831 } 832 833 int 834 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 835 { 836 struct vm_isa_irq isa_irq; 837 838 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 839 isa_irq.atpic_irq = atpic_irq; 840 isa_irq.ioapic_irq = ioapic_irq; 841 842 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 843 } 844 845 int 846 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 847 { 848 struct vm_isa_irq isa_irq; 849 850 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 851 isa_irq.atpic_irq = atpic_irq; 852 isa_irq.ioapic_irq = ioapic_irq; 853 854 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 855 } 856 857 int 858 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 859 { 860 struct vm_isa_irq isa_irq; 861 862 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 863 isa_irq.atpic_irq = atpic_irq; 864 isa_irq.ioapic_irq = ioapic_irq; 865 866 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 867 } 868 869 int 870 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 871 enum vm_intr_trigger trigger) 872 { 873 struct vm_isa_irq_trigger isa_irq_trigger; 874 875 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 876 isa_irq_trigger.atpic_irq = atpic_irq; 877 isa_irq_trigger.trigger = trigger; 878 879 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 880 } 881 882 int 883 vm_inject_nmi(struct vmctx *ctx, int vcpu) 884 { 885 struct vm_nmi vmnmi; 886 887 bzero(&vmnmi, sizeof(vmnmi)); 888 vmnmi.cpuid = vcpu; 889 890 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 891 } 892 893 static const char *capstrmap[] = { 894 [VM_CAP_HALT_EXIT] = "hlt_exit", 895 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 896 [VM_CAP_PAUSE_EXIT] = "pause_exit", 897 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 898 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 899 [VM_CAP_BPT_EXIT] = "bpt_exit", 900 }; 901 902 int 903 vm_capability_name2type(const char *capname) 904 { 905 int i; 906 907 for (i = 0; i < (int)nitems(capstrmap); i++) { 908 if (strcmp(capstrmap[i], capname) == 0) 909 return (i); 910 } 911 912 return (-1); 913 } 914 915 const char * 916 vm_capability_type2name(int type) 917 { 918 if (type >= 0 && type < (int)nitems(capstrmap)) 919 return (capstrmap[type]); 920 921 return (NULL); 922 } 923 924 int 925 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 926 int *retval) 927 { 928 int error; 929 struct vm_capability vmcap; 930 931 bzero(&vmcap, sizeof(vmcap)); 932 vmcap.cpuid = vcpu; 933 vmcap.captype = cap; 934 935 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 936 *retval = vmcap.capval; 937 return (error); 938 } 939 940 int 941 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 942 { 943 struct vm_capability vmcap; 944 945 bzero(&vmcap, sizeof(vmcap)); 946 vmcap.cpuid = vcpu; 947 vmcap.captype = cap; 948 vmcap.capval = val; 949 950 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 951 } 952 953 int 954 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 955 { 956 struct vm_pptdev pptdev; 957 958 bzero(&pptdev, sizeof(pptdev)); 959 pptdev.bus = bus; 960 pptdev.slot = slot; 961 pptdev.func = func; 962 963 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 964 } 965 966 int 967 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 968 { 969 struct vm_pptdev pptdev; 970 971 bzero(&pptdev, sizeof(pptdev)); 972 pptdev.bus = bus; 973 pptdev.slot = slot; 974 pptdev.func = func; 975 976 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 977 } 978 979 int 980 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 981 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 982 { 983 struct vm_pptdev_mmio pptmmio; 984 985 bzero(&pptmmio, sizeof(pptmmio)); 986 pptmmio.bus = bus; 987 pptmmio.slot = slot; 988 pptmmio.func = func; 989 pptmmio.gpa = gpa; 990 pptmmio.len = len; 991 pptmmio.hpa = hpa; 992 993 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 994 } 995 996 int 997 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 998 vm_paddr_t gpa, size_t len) 999 { 1000 struct vm_pptdev_mmio pptmmio; 1001 1002 bzero(&pptmmio, sizeof(pptmmio)); 1003 pptmmio.bus = bus; 1004 pptmmio.slot = slot; 1005 pptmmio.func = func; 1006 pptmmio.gpa = gpa; 1007 pptmmio.len = len; 1008 1009 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1010 } 1011 1012 int 1013 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1014 uint64_t addr, uint64_t msg, int numvec) 1015 { 1016 struct vm_pptdev_msi pptmsi; 1017 1018 bzero(&pptmsi, sizeof(pptmsi)); 1019 pptmsi.vcpu = vcpu; 1020 pptmsi.bus = bus; 1021 pptmsi.slot = slot; 1022 pptmsi.func = func; 1023 pptmsi.msg = msg; 1024 pptmsi.addr = addr; 1025 pptmsi.numvec = numvec; 1026 1027 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1028 } 1029 1030 int 1031 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1032 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1033 { 1034 struct vm_pptdev_msix pptmsix; 1035 1036 bzero(&pptmsix, sizeof(pptmsix)); 1037 pptmsix.vcpu = vcpu; 1038 pptmsix.bus = bus; 1039 pptmsix.slot = slot; 1040 pptmsix.func = func; 1041 pptmsix.idx = idx; 1042 pptmsix.msg = msg; 1043 pptmsix.addr = addr; 1044 pptmsix.vector_control = vector_control; 1045 1046 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1047 } 1048 1049 int 1050 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func) 1051 { 1052 struct vm_pptdev ppt; 1053 1054 bzero(&ppt, sizeof(ppt)); 1055 ppt.bus = bus; 1056 ppt.slot = slot; 1057 ppt.func = func; 1058 1059 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt); 1060 } 1061 1062 uint64_t * 1063 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 1064 int *ret_entries) 1065 { 1066 static _Thread_local uint64_t *stats_buf; 1067 static _Thread_local u_int stats_count; 1068 uint64_t *new_stats; 1069 struct vm_stats vmstats; 1070 u_int count, index; 1071 bool have_stats; 1072 1073 have_stats = false; 1074 vmstats.cpuid = vcpu; 1075 count = 0; 1076 for (index = 0;; index += nitems(vmstats.statbuf)) { 1077 vmstats.index = index; 1078 if (ioctl(ctx->fd, VM_STATS, &vmstats) != 0) 1079 break; 1080 if (stats_count < index + vmstats.num_entries) { 1081 new_stats = realloc(stats_buf, 1082 (index + vmstats.num_entries) * sizeof(uint64_t)); 1083 if (new_stats == NULL) { 1084 errno = ENOMEM; 1085 return (NULL); 1086 } 1087 stats_count = index + vmstats.num_entries; 1088 stats_buf = new_stats; 1089 } 1090 memcpy(stats_buf + index, vmstats.statbuf, 1091 vmstats.num_entries * sizeof(uint64_t)); 1092 count += vmstats.num_entries; 1093 have_stats = true; 1094 1095 if (vmstats.num_entries != nitems(vmstats.statbuf)) 1096 break; 1097 } 1098 if (have_stats) { 1099 if (ret_entries) 1100 *ret_entries = count; 1101 if (ret_tv) 1102 *ret_tv = vmstats.tv; 1103 return (stats_buf); 1104 } else 1105 return (NULL); 1106 } 1107 1108 const char * 1109 vm_get_stat_desc(struct vmctx *ctx, int index) 1110 { 1111 static struct vm_stat_desc statdesc; 1112 1113 statdesc.index = index; 1114 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1115 return (statdesc.desc); 1116 else 1117 return (NULL); 1118 } 1119 1120 int 1121 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1122 { 1123 int error; 1124 struct vm_x2apic x2apic; 1125 1126 bzero(&x2apic, sizeof(x2apic)); 1127 x2apic.cpuid = vcpu; 1128 1129 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1130 *state = x2apic.state; 1131 return (error); 1132 } 1133 1134 int 1135 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1136 { 1137 int error; 1138 struct vm_x2apic x2apic; 1139 1140 bzero(&x2apic, sizeof(x2apic)); 1141 x2apic.cpuid = vcpu; 1142 x2apic.state = state; 1143 1144 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1145 1146 return (error); 1147 } 1148 1149 /* 1150 * From Intel Vol 3a: 1151 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1152 */ 1153 int 1154 vcpu_reset(struct vmctx *vmctx, int vcpu) 1155 { 1156 int error; 1157 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1158 uint32_t desc_access, desc_limit; 1159 uint16_t sel; 1160 1161 zero = 0; 1162 1163 rflags = 0x2; 1164 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1165 if (error) 1166 goto done; 1167 1168 rip = 0xfff0; 1169 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1170 goto done; 1171 1172 cr0 = CR0_NE; 1173 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1174 goto done; 1175 1176 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1177 goto done; 1178 1179 cr4 = 0; 1180 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1181 goto done; 1182 1183 /* 1184 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1185 */ 1186 desc_base = 0xffff0000; 1187 desc_limit = 0xffff; 1188 desc_access = 0x0093; 1189 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1190 desc_base, desc_limit, desc_access); 1191 if (error) 1192 goto done; 1193 1194 sel = 0xf000; 1195 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1196 goto done; 1197 1198 /* 1199 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1200 */ 1201 desc_base = 0; 1202 desc_limit = 0xffff; 1203 desc_access = 0x0093; 1204 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1205 desc_base, desc_limit, desc_access); 1206 if (error) 1207 goto done; 1208 1209 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1210 desc_base, desc_limit, desc_access); 1211 if (error) 1212 goto done; 1213 1214 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1215 desc_base, desc_limit, desc_access); 1216 if (error) 1217 goto done; 1218 1219 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1220 desc_base, desc_limit, desc_access); 1221 if (error) 1222 goto done; 1223 1224 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1225 desc_base, desc_limit, desc_access); 1226 if (error) 1227 goto done; 1228 1229 sel = 0; 1230 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1231 goto done; 1232 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1233 goto done; 1234 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1235 goto done; 1236 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1237 goto done; 1238 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1239 goto done; 1240 1241 /* General purpose registers */ 1242 rdx = 0xf00; 1243 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1244 goto done; 1245 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1246 goto done; 1247 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1248 goto done; 1249 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1250 goto done; 1251 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1252 goto done; 1253 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1254 goto done; 1255 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1256 goto done; 1257 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1258 goto done; 1259 1260 /* GDTR, IDTR */ 1261 desc_base = 0; 1262 desc_limit = 0xffff; 1263 desc_access = 0; 1264 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1265 desc_base, desc_limit, desc_access); 1266 if (error != 0) 1267 goto done; 1268 1269 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1270 desc_base, desc_limit, desc_access); 1271 if (error != 0) 1272 goto done; 1273 1274 /* TR */ 1275 desc_base = 0; 1276 desc_limit = 0xffff; 1277 desc_access = 0x0000008b; 1278 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1279 if (error) 1280 goto done; 1281 1282 sel = 0; 1283 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1284 goto done; 1285 1286 /* LDTR */ 1287 desc_base = 0; 1288 desc_limit = 0xffff; 1289 desc_access = 0x00000082; 1290 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1291 desc_limit, desc_access); 1292 if (error) 1293 goto done; 1294 1295 sel = 0; 1296 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1297 goto done; 1298 1299 /* XXX cr2, debug registers */ 1300 1301 error = 0; 1302 done: 1303 return (error); 1304 } 1305 1306 int 1307 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1308 { 1309 int error, i; 1310 struct vm_gpa_pte gpapte; 1311 1312 bzero(&gpapte, sizeof(gpapte)); 1313 gpapte.gpa = gpa; 1314 1315 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1316 1317 if (error == 0) { 1318 *num = gpapte.ptenum; 1319 for (i = 0; i < gpapte.ptenum; i++) 1320 pte[i] = gpapte.pte[i]; 1321 } 1322 1323 return (error); 1324 } 1325 1326 int 1327 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1328 { 1329 int error; 1330 struct vm_hpet_cap cap; 1331 1332 bzero(&cap, sizeof(struct vm_hpet_cap)); 1333 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1334 if (capabilities != NULL) 1335 *capabilities = cap.capabilities; 1336 return (error); 1337 } 1338 1339 int 1340 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1341 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1342 { 1343 struct vm_gla2gpa gg; 1344 int error; 1345 1346 bzero(&gg, sizeof(struct vm_gla2gpa)); 1347 gg.vcpuid = vcpu; 1348 gg.prot = prot; 1349 gg.gla = gla; 1350 gg.paging = *paging; 1351 1352 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1353 if (error == 0) { 1354 *fault = gg.fault; 1355 *gpa = gg.gpa; 1356 } 1357 return (error); 1358 } 1359 1360 int 1361 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1362 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1363 { 1364 struct vm_gla2gpa gg; 1365 int error; 1366 1367 bzero(&gg, sizeof(struct vm_gla2gpa)); 1368 gg.vcpuid = vcpu; 1369 gg.prot = prot; 1370 gg.gla = gla; 1371 gg.paging = *paging; 1372 1373 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1374 if (error == 0) { 1375 *fault = gg.fault; 1376 *gpa = gg.gpa; 1377 } 1378 return (error); 1379 } 1380 1381 #ifndef min 1382 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1383 #endif 1384 1385 int 1386 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1387 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1388 int *fault) 1389 { 1390 void *va; 1391 uint64_t gpa, off; 1392 int error, i, n; 1393 1394 for (i = 0; i < iovcnt; i++) { 1395 iov[i].iov_base = 0; 1396 iov[i].iov_len = 0; 1397 } 1398 1399 while (len) { 1400 assert(iovcnt > 0); 1401 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1402 if (error || *fault) 1403 return (error); 1404 1405 off = gpa & PAGE_MASK; 1406 n = MIN(len, PAGE_SIZE - off); 1407 1408 va = vm_map_gpa(ctx, gpa, n); 1409 if (va == NULL) 1410 return (EFAULT); 1411 1412 iov->iov_base = va; 1413 iov->iov_len = n; 1414 iov++; 1415 iovcnt--; 1416 1417 gla += n; 1418 len -= n; 1419 } 1420 return (0); 1421 } 1422 1423 void 1424 vm_copy_teardown(struct vmctx *ctx __unused, int vcpu __unused, 1425 struct iovec *iov __unused, int iovcnt __unused) 1426 { 1427 } 1428 1429 void 1430 vm_copyin(struct vmctx *ctx __unused, int vcpu __unused, struct iovec *iov, 1431 void *vp, size_t len) 1432 { 1433 const char *src; 1434 char *dst; 1435 size_t n; 1436 1437 dst = vp; 1438 while (len) { 1439 assert(iov->iov_len); 1440 n = min(len, iov->iov_len); 1441 src = iov->iov_base; 1442 bcopy(src, dst, n); 1443 1444 iov++; 1445 dst += n; 1446 len -= n; 1447 } 1448 } 1449 1450 void 1451 vm_copyout(struct vmctx *ctx __unused, int vcpu __unused, const void *vp, 1452 struct iovec *iov, size_t len) 1453 { 1454 const char *src; 1455 char *dst; 1456 size_t n; 1457 1458 src = vp; 1459 while (len) { 1460 assert(iov->iov_len); 1461 n = min(len, iov->iov_len); 1462 dst = iov->iov_base; 1463 bcopy(src, dst, n); 1464 1465 iov++; 1466 src += n; 1467 len -= n; 1468 } 1469 } 1470 1471 static int 1472 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1473 { 1474 struct vm_cpuset vm_cpuset; 1475 int error; 1476 1477 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1478 vm_cpuset.which = which; 1479 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1480 vm_cpuset.cpus = cpus; 1481 1482 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1483 return (error); 1484 } 1485 1486 int 1487 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1488 { 1489 1490 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1491 } 1492 1493 int 1494 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1495 { 1496 1497 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1498 } 1499 1500 int 1501 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1502 { 1503 1504 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1505 } 1506 1507 int 1508 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1509 { 1510 struct vm_activate_cpu ac; 1511 int error; 1512 1513 bzero(&ac, sizeof(struct vm_activate_cpu)); 1514 ac.vcpuid = vcpu; 1515 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1516 return (error); 1517 } 1518 1519 int 1520 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1521 { 1522 struct vm_activate_cpu ac; 1523 int error; 1524 1525 bzero(&ac, sizeof(struct vm_activate_cpu)); 1526 ac.vcpuid = vcpu; 1527 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1528 return (error); 1529 } 1530 1531 int 1532 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1533 { 1534 struct vm_activate_cpu ac; 1535 int error; 1536 1537 bzero(&ac, sizeof(struct vm_activate_cpu)); 1538 ac.vcpuid = vcpu; 1539 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1540 return (error); 1541 } 1542 1543 int 1544 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1545 { 1546 struct vm_intinfo vmii; 1547 int error; 1548 1549 bzero(&vmii, sizeof(struct vm_intinfo)); 1550 vmii.vcpuid = vcpu; 1551 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1552 if (error == 0) { 1553 *info1 = vmii.info1; 1554 *info2 = vmii.info2; 1555 } 1556 return (error); 1557 } 1558 1559 int 1560 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1561 { 1562 struct vm_intinfo vmii; 1563 int error; 1564 1565 bzero(&vmii, sizeof(struct vm_intinfo)); 1566 vmii.vcpuid = vcpu; 1567 vmii.info1 = info1; 1568 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1569 return (error); 1570 } 1571 1572 int 1573 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1574 { 1575 struct vm_rtc_data rtcdata; 1576 int error; 1577 1578 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1579 rtcdata.offset = offset; 1580 rtcdata.value = value; 1581 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1582 return (error); 1583 } 1584 1585 int 1586 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1587 { 1588 struct vm_rtc_data rtcdata; 1589 int error; 1590 1591 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1592 rtcdata.offset = offset; 1593 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1594 if (error == 0) 1595 *retval = rtcdata.value; 1596 return (error); 1597 } 1598 1599 int 1600 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1601 { 1602 struct vm_rtc_time rtctime; 1603 int error; 1604 1605 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1606 rtctime.secs = secs; 1607 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1608 return (error); 1609 } 1610 1611 int 1612 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1613 { 1614 struct vm_rtc_time rtctime; 1615 int error; 1616 1617 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1618 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1619 if (error == 0) 1620 *secs = rtctime.secs; 1621 return (error); 1622 } 1623 1624 int 1625 vm_restart_instruction(void *arg, int vcpu) 1626 { 1627 struct vmctx *ctx = arg; 1628 1629 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1630 } 1631 1632 int 1633 vm_snapshot_req(struct vm_snapshot_meta *meta) 1634 { 1635 1636 if (ioctl(meta->ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) { 1637 #ifdef SNAPSHOT_DEBUG 1638 fprintf(stderr, "%s: snapshot failed for %s: %d\r\n", 1639 __func__, meta->dev_name, errno); 1640 #endif 1641 return (-1); 1642 } 1643 return (0); 1644 } 1645 1646 int 1647 vm_restore_time(struct vmctx *ctx) 1648 { 1649 int dummy; 1650 1651 dummy = 0; 1652 return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy)); 1653 } 1654 1655 int 1656 vm_set_topology(struct vmctx *ctx, 1657 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1658 { 1659 struct vm_cpu_topology topology; 1660 1661 bzero(&topology, sizeof (struct vm_cpu_topology)); 1662 topology.sockets = sockets; 1663 topology.cores = cores; 1664 topology.threads = threads; 1665 topology.maxcpus = maxcpus; 1666 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1667 } 1668 1669 int 1670 vm_get_topology(struct vmctx *ctx, 1671 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1672 { 1673 struct vm_cpu_topology topology; 1674 int error; 1675 1676 bzero(&topology, sizeof (struct vm_cpu_topology)); 1677 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1678 if (error == 0) { 1679 *sockets = topology.sockets; 1680 *cores = topology.cores; 1681 *threads = topology.threads; 1682 *maxcpus = topology.maxcpus; 1683 } 1684 return (error); 1685 } 1686 1687 int 1688 vm_get_device_fd(struct vmctx *ctx) 1689 { 1690 1691 return (ctx->fd); 1692 } 1693 1694 const cap_ioctl_t * 1695 vm_get_ioctls(size_t *len) 1696 { 1697 cap_ioctl_t *cmds; 1698 /* keep in sync with machine/vmm_dev.h */ 1699 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1700 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1701 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER, 1702 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1703 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1704 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 1705 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1706 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1707 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1708 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1709 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1710 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1711 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX, 1712 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1713 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1714 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1715 VM_GLA2GPA_NOFAULT, 1716 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1717 VM_SET_INTINFO, VM_GET_INTINFO, 1718 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1719 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 1720 1721 if (len == NULL) { 1722 cmds = malloc(sizeof(vm_ioctl_cmds)); 1723 if (cmds == NULL) 1724 return (NULL); 1725 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1726 return (cmds); 1727 } 1728 1729 *len = nitems(vm_ioctl_cmds); 1730 return (NULL); 1731 } 1732