1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/sysctl.h> 36 #include <sys/ioctl.h> 37 #include <sys/linker.h> 38 #include <sys/mman.h> 39 #include <sys/module.h> 40 #include <sys/_iovec.h> 41 #include <sys/cpuset.h> 42 43 #include <x86/segments.h> 44 #include <machine/specialreg.h> 45 46 #include <errno.h> 47 #include <stdbool.h> 48 #include <stdio.h> 49 #include <stdlib.h> 50 #include <assert.h> 51 #include <string.h> 52 #include <fcntl.h> 53 #include <unistd.h> 54 55 #include <libutil.h> 56 57 #include <vm/vm.h> 58 #include <machine/vmm.h> 59 #include <machine/vmm_dev.h> 60 #include <machine/vmm_snapshot.h> 61 62 #include "vmmapi.h" 63 64 #define MB (1024 * 1024UL) 65 #define GB (1024 * 1024 * 1024UL) 66 67 /* 68 * Size of the guard region before and after the virtual address space 69 * mapping the guest physical memory. This must be a multiple of the 70 * superpage size for performance reasons. 71 */ 72 #define VM_MMAP_GUARD_SIZE (4 * MB) 73 74 #define PROT_RW (PROT_READ | PROT_WRITE) 75 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 76 77 struct vmctx { 78 int fd; 79 uint32_t lowmem_limit; 80 int memflags; 81 size_t lowmem; 82 size_t highmem; 83 char *baseaddr; 84 char *name; 85 }; 86 87 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 88 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 89 90 static int 91 vm_device_open(const char *name) 92 { 93 int fd, len; 94 char *vmfile; 95 96 len = strlen("/dev/vmm/") + strlen(name) + 1; 97 vmfile = malloc(len); 98 assert(vmfile != NULL); 99 snprintf(vmfile, len, "/dev/vmm/%s", name); 100 101 /* Open the device file */ 102 fd = open(vmfile, O_RDWR, 0); 103 104 free(vmfile); 105 return (fd); 106 } 107 108 int 109 vm_create(const char *name) 110 { 111 /* Try to load vmm(4) module before creating a guest. */ 112 if (modfind("vmm") < 0) 113 kldload("vmm"); 114 return (CREATE(name)); 115 } 116 117 struct vmctx * 118 vm_open(const char *name) 119 { 120 struct vmctx *vm; 121 int saved_errno; 122 123 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 124 assert(vm != NULL); 125 126 vm->fd = -1; 127 vm->memflags = 0; 128 vm->lowmem_limit = 3 * GB; 129 vm->name = (char *)(vm + 1); 130 strcpy(vm->name, name); 131 132 if ((vm->fd = vm_device_open(vm->name)) < 0) 133 goto err; 134 135 return (vm); 136 err: 137 saved_errno = errno; 138 free(vm); 139 errno = saved_errno; 140 return (NULL); 141 } 142 143 void 144 vm_close(struct vmctx *vm) 145 { 146 assert(vm != NULL); 147 148 close(vm->fd); 149 free(vm); 150 } 151 152 void 153 vm_destroy(struct vmctx *vm) 154 { 155 assert(vm != NULL); 156 157 if (vm->fd >= 0) 158 close(vm->fd); 159 DESTROY(vm->name); 160 161 free(vm); 162 } 163 164 int 165 vm_parse_memsize(const char *opt, size_t *ret_memsize) 166 { 167 char *endptr; 168 size_t optval; 169 int error; 170 171 optval = strtoul(opt, &endptr, 0); 172 if (*opt != '\0' && *endptr == '\0') { 173 /* 174 * For the sake of backward compatibility if the memory size 175 * specified on the command line is less than a megabyte then 176 * it is interpreted as being in units of MB. 177 */ 178 if (optval < MB) 179 optval *= MB; 180 *ret_memsize = optval; 181 error = 0; 182 } else 183 error = expand_number(opt, ret_memsize); 184 185 return (error); 186 } 187 188 uint32_t 189 vm_get_lowmem_limit(struct vmctx *ctx) 190 { 191 192 return (ctx->lowmem_limit); 193 } 194 195 void 196 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 197 { 198 199 ctx->lowmem_limit = limit; 200 } 201 202 void 203 vm_set_memflags(struct vmctx *ctx, int flags) 204 { 205 206 ctx->memflags = flags; 207 } 208 209 int 210 vm_get_memflags(struct vmctx *ctx) 211 { 212 213 return (ctx->memflags); 214 } 215 216 /* 217 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 218 */ 219 int 220 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 221 size_t len, int prot) 222 { 223 struct vm_memmap memmap; 224 int error, flags; 225 226 memmap.gpa = gpa; 227 memmap.segid = segid; 228 memmap.segoff = off; 229 memmap.len = len; 230 memmap.prot = prot; 231 memmap.flags = 0; 232 233 if (ctx->memflags & VM_MEM_F_WIRED) 234 memmap.flags |= VM_MEMMAP_F_WIRED; 235 236 /* 237 * If this mapping already exists then don't create it again. This 238 * is the common case for SYSMEM mappings created by bhyveload(8). 239 */ 240 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 241 if (error == 0 && gpa == memmap.gpa) { 242 if (segid != memmap.segid || off != memmap.segoff || 243 prot != memmap.prot || flags != memmap.flags) { 244 errno = EEXIST; 245 return (-1); 246 } else { 247 return (0); 248 } 249 } 250 251 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 252 return (error); 253 } 254 255 int 256 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr, 257 size_t *lowmem_size, size_t *highmem_size) 258 { 259 260 *guest_baseaddr = ctx->baseaddr; 261 *lowmem_size = ctx->lowmem; 262 *highmem_size = ctx->highmem; 263 return (0); 264 } 265 266 int 267 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) 268 { 269 struct vm_munmap munmap; 270 int error; 271 272 munmap.gpa = gpa; 273 munmap.len = len; 274 275 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); 276 return (error); 277 } 278 279 int 280 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 281 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 282 { 283 struct vm_memmap memmap; 284 int error; 285 286 bzero(&memmap, sizeof(struct vm_memmap)); 287 memmap.gpa = *gpa; 288 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 289 if (error == 0) { 290 *gpa = memmap.gpa; 291 *segid = memmap.segid; 292 *segoff = memmap.segoff; 293 *len = memmap.len; 294 *prot = memmap.prot; 295 *flags = memmap.flags; 296 } 297 return (error); 298 } 299 300 /* 301 * Return 0 if the segments are identical and non-zero otherwise. 302 * 303 * This is slightly complicated by the fact that only device memory segments 304 * are named. 305 */ 306 static int 307 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 308 { 309 310 if (len == len2) { 311 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 312 return (0); 313 } 314 return (-1); 315 } 316 317 static int 318 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 319 { 320 struct vm_memseg memseg; 321 size_t n; 322 int error; 323 324 /* 325 * If the memory segment has already been created then just return. 326 * This is the usual case for the SYSMEM segment created by userspace 327 * loaders like bhyveload(8). 328 */ 329 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 330 sizeof(memseg.name)); 331 if (error) 332 return (error); 333 334 if (memseg.len != 0) { 335 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 336 errno = EINVAL; 337 return (-1); 338 } else { 339 return (0); 340 } 341 } 342 343 bzero(&memseg, sizeof(struct vm_memseg)); 344 memseg.segid = segid; 345 memseg.len = len; 346 if (name != NULL) { 347 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 348 if (n >= sizeof(memseg.name)) { 349 errno = ENAMETOOLONG; 350 return (-1); 351 } 352 } 353 354 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 355 return (error); 356 } 357 358 int 359 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 360 size_t bufsize) 361 { 362 struct vm_memseg memseg; 363 size_t n; 364 int error; 365 366 memseg.segid = segid; 367 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 368 if (error == 0) { 369 *lenp = memseg.len; 370 n = strlcpy(namebuf, memseg.name, bufsize); 371 if (n >= bufsize) { 372 errno = ENAMETOOLONG; 373 error = -1; 374 } 375 } 376 return (error); 377 } 378 379 static int 380 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 381 { 382 char *ptr; 383 int error, flags; 384 385 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 386 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 387 if (error) 388 return (error); 389 390 flags = MAP_SHARED | MAP_FIXED; 391 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 392 flags |= MAP_NOCORE; 393 394 /* mmap into the process address space on the host */ 395 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 396 if (ptr == MAP_FAILED) 397 return (-1); 398 399 return (0); 400 } 401 402 int 403 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 404 { 405 size_t objsize, len; 406 vm_paddr_t gpa; 407 char *baseaddr, *ptr; 408 int error; 409 410 assert(vms == VM_MMAP_ALL); 411 412 /* 413 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 414 * create another 'highmem' segment above 4GB for the remainder. 415 */ 416 if (memsize > ctx->lowmem_limit) { 417 ctx->lowmem = ctx->lowmem_limit; 418 ctx->highmem = memsize - ctx->lowmem_limit; 419 objsize = 4*GB + ctx->highmem; 420 } else { 421 ctx->lowmem = memsize; 422 ctx->highmem = 0; 423 objsize = ctx->lowmem; 424 } 425 426 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 427 if (error) 428 return (error); 429 430 /* 431 * Stake out a contiguous region covering the guest physical memory 432 * and the adjoining guard regions. 433 */ 434 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 435 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 436 if (ptr == MAP_FAILED) 437 return (-1); 438 439 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 440 if (ctx->highmem > 0) { 441 gpa = 4*GB; 442 len = ctx->highmem; 443 error = setup_memory_segment(ctx, gpa, len, baseaddr); 444 if (error) 445 return (error); 446 } 447 448 if (ctx->lowmem > 0) { 449 gpa = 0; 450 len = ctx->lowmem; 451 error = setup_memory_segment(ctx, gpa, len, baseaddr); 452 if (error) 453 return (error); 454 } 455 456 ctx->baseaddr = baseaddr; 457 458 return (0); 459 } 460 461 /* 462 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 463 * the lowmem or highmem regions. 464 * 465 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 466 * The instruction emulation code depends on this behavior. 467 */ 468 void * 469 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 470 { 471 472 if (ctx->lowmem > 0) { 473 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 474 gaddr + len <= ctx->lowmem) 475 return (ctx->baseaddr + gaddr); 476 } 477 478 if (ctx->highmem > 0) { 479 if (gaddr >= 4*GB) { 480 if (gaddr < 4*GB + ctx->highmem && 481 len <= ctx->highmem && 482 gaddr + len <= 4*GB + ctx->highmem) 483 return (ctx->baseaddr + gaddr); 484 } 485 } 486 487 return (NULL); 488 } 489 490 vm_paddr_t 491 vm_rev_map_gpa(struct vmctx *ctx, void *addr) 492 { 493 vm_paddr_t offaddr; 494 495 offaddr = (char *)addr - ctx->baseaddr; 496 497 if (ctx->lowmem > 0) 498 if (offaddr <= ctx->lowmem) 499 return (offaddr); 500 501 if (ctx->highmem > 0) 502 if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem) 503 return (offaddr); 504 505 return ((vm_paddr_t)-1); 506 } 507 508 const char * 509 vm_get_name(struct vmctx *ctx) 510 { 511 512 return (ctx->name); 513 } 514 515 size_t 516 vm_get_lowmem_size(struct vmctx *ctx) 517 { 518 519 return (ctx->lowmem); 520 } 521 522 size_t 523 vm_get_highmem_size(struct vmctx *ctx) 524 { 525 526 return (ctx->highmem); 527 } 528 529 void * 530 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 531 { 532 char pathname[MAXPATHLEN]; 533 size_t len2; 534 char *base, *ptr; 535 int fd, error, flags; 536 537 fd = -1; 538 ptr = MAP_FAILED; 539 if (name == NULL || strlen(name) == 0) { 540 errno = EINVAL; 541 goto done; 542 } 543 544 error = vm_alloc_memseg(ctx, segid, len, name); 545 if (error) 546 goto done; 547 548 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 549 strlcat(pathname, ctx->name, sizeof(pathname)); 550 strlcat(pathname, ".", sizeof(pathname)); 551 strlcat(pathname, name, sizeof(pathname)); 552 553 fd = open(pathname, O_RDWR); 554 if (fd < 0) 555 goto done; 556 557 /* 558 * Stake out a contiguous region covering the device memory and the 559 * adjoining guard regions. 560 */ 561 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 562 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 563 0); 564 if (base == MAP_FAILED) 565 goto done; 566 567 flags = MAP_SHARED | MAP_FIXED; 568 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 569 flags |= MAP_NOCORE; 570 571 /* mmap the devmem region in the host address space */ 572 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 573 done: 574 if (fd >= 0) 575 close(fd); 576 return (ptr); 577 } 578 579 int 580 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 581 uint64_t base, uint32_t limit, uint32_t access) 582 { 583 int error; 584 struct vm_seg_desc vmsegdesc; 585 586 bzero(&vmsegdesc, sizeof(vmsegdesc)); 587 vmsegdesc.cpuid = vcpu; 588 vmsegdesc.regnum = reg; 589 vmsegdesc.desc.base = base; 590 vmsegdesc.desc.limit = limit; 591 vmsegdesc.desc.access = access; 592 593 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 594 return (error); 595 } 596 597 int 598 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 599 uint64_t *base, uint32_t *limit, uint32_t *access) 600 { 601 int error; 602 struct vm_seg_desc vmsegdesc; 603 604 bzero(&vmsegdesc, sizeof(vmsegdesc)); 605 vmsegdesc.cpuid = vcpu; 606 vmsegdesc.regnum = reg; 607 608 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 609 if (error == 0) { 610 *base = vmsegdesc.desc.base; 611 *limit = vmsegdesc.desc.limit; 612 *access = vmsegdesc.desc.access; 613 } 614 return (error); 615 } 616 617 int 618 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 619 { 620 int error; 621 622 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 623 &seg_desc->access); 624 return (error); 625 } 626 627 int 628 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 629 { 630 int error; 631 struct vm_register vmreg; 632 633 bzero(&vmreg, sizeof(vmreg)); 634 vmreg.cpuid = vcpu; 635 vmreg.regnum = reg; 636 vmreg.regval = val; 637 638 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 639 return (error); 640 } 641 642 int 643 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 644 { 645 int error; 646 struct vm_register vmreg; 647 648 bzero(&vmreg, sizeof(vmreg)); 649 vmreg.cpuid = vcpu; 650 vmreg.regnum = reg; 651 652 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 653 *ret_val = vmreg.regval; 654 return (error); 655 } 656 657 int 658 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 659 const int *regnums, uint64_t *regvals) 660 { 661 int error; 662 struct vm_register_set vmregset; 663 664 bzero(&vmregset, sizeof(vmregset)); 665 vmregset.cpuid = vcpu; 666 vmregset.count = count; 667 vmregset.regnums = regnums; 668 vmregset.regvals = regvals; 669 670 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 671 return (error); 672 } 673 674 int 675 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 676 const int *regnums, uint64_t *regvals) 677 { 678 int error; 679 struct vm_register_set vmregset; 680 681 bzero(&vmregset, sizeof(vmregset)); 682 vmregset.cpuid = vcpu; 683 vmregset.count = count; 684 vmregset.regnums = regnums; 685 vmregset.regvals = regvals; 686 687 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 688 return (error); 689 } 690 691 int 692 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit) 693 { 694 int error; 695 struct vm_run vmrun; 696 697 bzero(&vmrun, sizeof(vmrun)); 698 vmrun.cpuid = vcpu; 699 700 error = ioctl(ctx->fd, VM_RUN, &vmrun); 701 bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit)); 702 return (error); 703 } 704 705 int 706 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 707 { 708 struct vm_suspend vmsuspend; 709 710 bzero(&vmsuspend, sizeof(vmsuspend)); 711 vmsuspend.how = how; 712 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 713 } 714 715 int 716 vm_reinit(struct vmctx *ctx) 717 { 718 719 return (ioctl(ctx->fd, VM_REINIT, 0)); 720 } 721 722 int 723 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 724 uint32_t errcode, int restart_instruction) 725 { 726 struct vm_exception exc; 727 728 exc.cpuid = vcpu; 729 exc.vector = vector; 730 exc.error_code = errcode; 731 exc.error_code_valid = errcode_valid; 732 exc.restart_instruction = restart_instruction; 733 734 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 735 } 736 737 int 738 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid) 739 { 740 /* 741 * The apic id associated with the 'vcpu' has the same numerical value 742 * as the 'vcpu' itself. 743 */ 744 return (apicid); 745 } 746 747 int 748 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 749 { 750 struct vm_lapic_irq vmirq; 751 752 bzero(&vmirq, sizeof(vmirq)); 753 vmirq.cpuid = vcpu; 754 vmirq.vector = vector; 755 756 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 757 } 758 759 int 760 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 761 { 762 struct vm_lapic_irq vmirq; 763 764 bzero(&vmirq, sizeof(vmirq)); 765 vmirq.cpuid = vcpu; 766 vmirq.vector = vector; 767 768 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 769 } 770 771 int 772 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 773 { 774 struct vm_lapic_msi vmmsi; 775 776 bzero(&vmmsi, sizeof(vmmsi)); 777 vmmsi.addr = addr; 778 vmmsi.msg = msg; 779 780 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 781 } 782 783 int 784 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 785 { 786 struct vm_ioapic_irq ioapic_irq; 787 788 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 789 ioapic_irq.irq = irq; 790 791 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 792 } 793 794 int 795 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 796 { 797 struct vm_ioapic_irq ioapic_irq; 798 799 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 800 ioapic_irq.irq = irq; 801 802 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 803 } 804 805 int 806 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 807 { 808 struct vm_ioapic_irq ioapic_irq; 809 810 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 811 ioapic_irq.irq = irq; 812 813 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 814 } 815 816 int 817 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 818 { 819 820 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 821 } 822 823 int 824 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa, 825 bool write, int size, uint64_t *value) 826 { 827 struct vm_readwrite_kernemu_device irp = { 828 .vcpuid = vcpu, 829 .access_width = fls(size) - 1, 830 .gpa = gpa, 831 .value = write ? *value : ~0ul, 832 }; 833 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 834 int rc; 835 836 rc = ioctl(ctx->fd, cmd, &irp); 837 if (rc == 0 && !write) 838 *value = irp.value; 839 return (rc); 840 } 841 842 int 843 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 844 { 845 struct vm_isa_irq isa_irq; 846 847 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 848 isa_irq.atpic_irq = atpic_irq; 849 isa_irq.ioapic_irq = ioapic_irq; 850 851 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 852 } 853 854 int 855 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 856 { 857 struct vm_isa_irq isa_irq; 858 859 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 860 isa_irq.atpic_irq = atpic_irq; 861 isa_irq.ioapic_irq = ioapic_irq; 862 863 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 864 } 865 866 int 867 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 868 { 869 struct vm_isa_irq isa_irq; 870 871 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 872 isa_irq.atpic_irq = atpic_irq; 873 isa_irq.ioapic_irq = ioapic_irq; 874 875 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 876 } 877 878 int 879 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 880 enum vm_intr_trigger trigger) 881 { 882 struct vm_isa_irq_trigger isa_irq_trigger; 883 884 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 885 isa_irq_trigger.atpic_irq = atpic_irq; 886 isa_irq_trigger.trigger = trigger; 887 888 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 889 } 890 891 int 892 vm_inject_nmi(struct vmctx *ctx, int vcpu) 893 { 894 struct vm_nmi vmnmi; 895 896 bzero(&vmnmi, sizeof(vmnmi)); 897 vmnmi.cpuid = vcpu; 898 899 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 900 } 901 902 static const char *capstrmap[] = { 903 [VM_CAP_HALT_EXIT] = "hlt_exit", 904 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 905 [VM_CAP_PAUSE_EXIT] = "pause_exit", 906 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 907 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 908 [VM_CAP_BPT_EXIT] = "bpt_exit", 909 }; 910 911 int 912 vm_capability_name2type(const char *capname) 913 { 914 int i; 915 916 for (i = 0; i < (int)nitems(capstrmap); i++) { 917 if (strcmp(capstrmap[i], capname) == 0) 918 return (i); 919 } 920 921 return (-1); 922 } 923 924 const char * 925 vm_capability_type2name(int type) 926 { 927 if (type >= 0 && type < (int)nitems(capstrmap)) 928 return (capstrmap[type]); 929 930 return (NULL); 931 } 932 933 int 934 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 935 int *retval) 936 { 937 int error; 938 struct vm_capability vmcap; 939 940 bzero(&vmcap, sizeof(vmcap)); 941 vmcap.cpuid = vcpu; 942 vmcap.captype = cap; 943 944 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 945 *retval = vmcap.capval; 946 return (error); 947 } 948 949 int 950 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 951 { 952 struct vm_capability vmcap; 953 954 bzero(&vmcap, sizeof(vmcap)); 955 vmcap.cpuid = vcpu; 956 vmcap.captype = cap; 957 vmcap.capval = val; 958 959 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 960 } 961 962 int 963 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 964 { 965 struct vm_pptdev pptdev; 966 967 bzero(&pptdev, sizeof(pptdev)); 968 pptdev.bus = bus; 969 pptdev.slot = slot; 970 pptdev.func = func; 971 972 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 973 } 974 975 int 976 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 977 { 978 struct vm_pptdev pptdev; 979 980 bzero(&pptdev, sizeof(pptdev)); 981 pptdev.bus = bus; 982 pptdev.slot = slot; 983 pptdev.func = func; 984 985 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 986 } 987 988 int 989 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 990 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 991 { 992 struct vm_pptdev_mmio pptmmio; 993 994 bzero(&pptmmio, sizeof(pptmmio)); 995 pptmmio.bus = bus; 996 pptmmio.slot = slot; 997 pptmmio.func = func; 998 pptmmio.gpa = gpa; 999 pptmmio.len = len; 1000 pptmmio.hpa = hpa; 1001 1002 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1003 } 1004 1005 int 1006 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1007 vm_paddr_t gpa, size_t len) 1008 { 1009 struct vm_pptdev_mmio pptmmio; 1010 1011 bzero(&pptmmio, sizeof(pptmmio)); 1012 pptmmio.bus = bus; 1013 pptmmio.slot = slot; 1014 pptmmio.func = func; 1015 pptmmio.gpa = gpa; 1016 pptmmio.len = len; 1017 1018 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1019 } 1020 1021 int 1022 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1023 uint64_t addr, uint64_t msg, int numvec) 1024 { 1025 struct vm_pptdev_msi pptmsi; 1026 1027 bzero(&pptmsi, sizeof(pptmsi)); 1028 pptmsi.vcpu = vcpu; 1029 pptmsi.bus = bus; 1030 pptmsi.slot = slot; 1031 pptmsi.func = func; 1032 pptmsi.msg = msg; 1033 pptmsi.addr = addr; 1034 pptmsi.numvec = numvec; 1035 1036 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1037 } 1038 1039 int 1040 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1041 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1042 { 1043 struct vm_pptdev_msix pptmsix; 1044 1045 bzero(&pptmsix, sizeof(pptmsix)); 1046 pptmsix.vcpu = vcpu; 1047 pptmsix.bus = bus; 1048 pptmsix.slot = slot; 1049 pptmsix.func = func; 1050 pptmsix.idx = idx; 1051 pptmsix.msg = msg; 1052 pptmsix.addr = addr; 1053 pptmsix.vector_control = vector_control; 1054 1055 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1056 } 1057 1058 int 1059 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func) 1060 { 1061 struct vm_pptdev ppt; 1062 1063 bzero(&ppt, sizeof(ppt)); 1064 ppt.bus = bus; 1065 ppt.slot = slot; 1066 ppt.func = func; 1067 1068 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt); 1069 } 1070 1071 uint64_t * 1072 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 1073 int *ret_entries) 1074 { 1075 static _Thread_local uint64_t *stats_buf; 1076 static _Thread_local u_int stats_count; 1077 uint64_t *new_stats; 1078 struct vm_stats vmstats; 1079 u_int count, index; 1080 bool have_stats; 1081 1082 have_stats = false; 1083 vmstats.cpuid = vcpu; 1084 count = 0; 1085 for (index = 0;; index += nitems(vmstats.statbuf)) { 1086 vmstats.index = index; 1087 if (ioctl(ctx->fd, VM_STATS, &vmstats) != 0) 1088 break; 1089 if (stats_count < index + vmstats.num_entries) { 1090 new_stats = realloc(stats_buf, 1091 (index + vmstats.num_entries) * sizeof(uint64_t)); 1092 if (new_stats == NULL) { 1093 errno = ENOMEM; 1094 return (NULL); 1095 } 1096 stats_count = index + vmstats.num_entries; 1097 stats_buf = new_stats; 1098 } 1099 memcpy(stats_buf + index, vmstats.statbuf, 1100 vmstats.num_entries * sizeof(uint64_t)); 1101 count += vmstats.num_entries; 1102 have_stats = true; 1103 1104 if (vmstats.num_entries != nitems(vmstats.statbuf)) 1105 break; 1106 } 1107 if (have_stats) { 1108 if (ret_entries) 1109 *ret_entries = count; 1110 if (ret_tv) 1111 *ret_tv = vmstats.tv; 1112 return (stats_buf); 1113 } else 1114 return (NULL); 1115 } 1116 1117 const char * 1118 vm_get_stat_desc(struct vmctx *ctx, int index) 1119 { 1120 static struct vm_stat_desc statdesc; 1121 1122 statdesc.index = index; 1123 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1124 return (statdesc.desc); 1125 else 1126 return (NULL); 1127 } 1128 1129 int 1130 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1131 { 1132 int error; 1133 struct vm_x2apic x2apic; 1134 1135 bzero(&x2apic, sizeof(x2apic)); 1136 x2apic.cpuid = vcpu; 1137 1138 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1139 *state = x2apic.state; 1140 return (error); 1141 } 1142 1143 int 1144 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1145 { 1146 int error; 1147 struct vm_x2apic x2apic; 1148 1149 bzero(&x2apic, sizeof(x2apic)); 1150 x2apic.cpuid = vcpu; 1151 x2apic.state = state; 1152 1153 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1154 1155 return (error); 1156 } 1157 1158 /* 1159 * From Intel Vol 3a: 1160 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1161 */ 1162 int 1163 vcpu_reset(struct vmctx *vmctx, int vcpu) 1164 { 1165 int error; 1166 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1167 uint32_t desc_access, desc_limit; 1168 uint16_t sel; 1169 1170 zero = 0; 1171 1172 rflags = 0x2; 1173 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1174 if (error) 1175 goto done; 1176 1177 rip = 0xfff0; 1178 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1179 goto done; 1180 1181 cr0 = CR0_NE; 1182 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1183 goto done; 1184 1185 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1186 goto done; 1187 1188 cr4 = 0; 1189 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1190 goto done; 1191 1192 /* 1193 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1194 */ 1195 desc_base = 0xffff0000; 1196 desc_limit = 0xffff; 1197 desc_access = 0x0093; 1198 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1199 desc_base, desc_limit, desc_access); 1200 if (error) 1201 goto done; 1202 1203 sel = 0xf000; 1204 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1205 goto done; 1206 1207 /* 1208 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1209 */ 1210 desc_base = 0; 1211 desc_limit = 0xffff; 1212 desc_access = 0x0093; 1213 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1214 desc_base, desc_limit, desc_access); 1215 if (error) 1216 goto done; 1217 1218 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1219 desc_base, desc_limit, desc_access); 1220 if (error) 1221 goto done; 1222 1223 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1224 desc_base, desc_limit, desc_access); 1225 if (error) 1226 goto done; 1227 1228 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1229 desc_base, desc_limit, desc_access); 1230 if (error) 1231 goto done; 1232 1233 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1234 desc_base, desc_limit, desc_access); 1235 if (error) 1236 goto done; 1237 1238 sel = 0; 1239 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1240 goto done; 1241 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1242 goto done; 1243 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1244 goto done; 1245 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1246 goto done; 1247 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1248 goto done; 1249 1250 /* General purpose registers */ 1251 rdx = 0xf00; 1252 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1253 goto done; 1254 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1255 goto done; 1256 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1257 goto done; 1258 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1259 goto done; 1260 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1261 goto done; 1262 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1263 goto done; 1264 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1265 goto done; 1266 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1267 goto done; 1268 1269 /* GDTR, IDTR */ 1270 desc_base = 0; 1271 desc_limit = 0xffff; 1272 desc_access = 0; 1273 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1274 desc_base, desc_limit, desc_access); 1275 if (error != 0) 1276 goto done; 1277 1278 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1279 desc_base, desc_limit, desc_access); 1280 if (error != 0) 1281 goto done; 1282 1283 /* TR */ 1284 desc_base = 0; 1285 desc_limit = 0xffff; 1286 desc_access = 0x0000008b; 1287 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1288 if (error) 1289 goto done; 1290 1291 sel = 0; 1292 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1293 goto done; 1294 1295 /* LDTR */ 1296 desc_base = 0; 1297 desc_limit = 0xffff; 1298 desc_access = 0x00000082; 1299 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1300 desc_limit, desc_access); 1301 if (error) 1302 goto done; 1303 1304 sel = 0; 1305 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1306 goto done; 1307 1308 /* XXX cr2, debug registers */ 1309 1310 error = 0; 1311 done: 1312 return (error); 1313 } 1314 1315 int 1316 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1317 { 1318 int error, i; 1319 struct vm_gpa_pte gpapte; 1320 1321 bzero(&gpapte, sizeof(gpapte)); 1322 gpapte.gpa = gpa; 1323 1324 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1325 1326 if (error == 0) { 1327 *num = gpapte.ptenum; 1328 for (i = 0; i < gpapte.ptenum; i++) 1329 pte[i] = gpapte.pte[i]; 1330 } 1331 1332 return (error); 1333 } 1334 1335 int 1336 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1337 { 1338 int error; 1339 struct vm_hpet_cap cap; 1340 1341 bzero(&cap, sizeof(struct vm_hpet_cap)); 1342 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1343 if (capabilities != NULL) 1344 *capabilities = cap.capabilities; 1345 return (error); 1346 } 1347 1348 int 1349 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1350 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1351 { 1352 struct vm_gla2gpa gg; 1353 int error; 1354 1355 bzero(&gg, sizeof(struct vm_gla2gpa)); 1356 gg.vcpuid = vcpu; 1357 gg.prot = prot; 1358 gg.gla = gla; 1359 gg.paging = *paging; 1360 1361 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1362 if (error == 0) { 1363 *fault = gg.fault; 1364 *gpa = gg.gpa; 1365 } 1366 return (error); 1367 } 1368 1369 int 1370 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1371 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1372 { 1373 struct vm_gla2gpa gg; 1374 int error; 1375 1376 bzero(&gg, sizeof(struct vm_gla2gpa)); 1377 gg.vcpuid = vcpu; 1378 gg.prot = prot; 1379 gg.gla = gla; 1380 gg.paging = *paging; 1381 1382 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1383 if (error == 0) { 1384 *fault = gg.fault; 1385 *gpa = gg.gpa; 1386 } 1387 return (error); 1388 } 1389 1390 #ifndef min 1391 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1392 #endif 1393 1394 int 1395 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1396 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1397 int *fault) 1398 { 1399 void *va; 1400 uint64_t gpa, off; 1401 int error, i, n; 1402 1403 for (i = 0; i < iovcnt; i++) { 1404 iov[i].iov_base = 0; 1405 iov[i].iov_len = 0; 1406 } 1407 1408 while (len) { 1409 assert(iovcnt > 0); 1410 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1411 if (error || *fault) 1412 return (error); 1413 1414 off = gpa & PAGE_MASK; 1415 n = MIN(len, PAGE_SIZE - off); 1416 1417 va = vm_map_gpa(ctx, gpa, n); 1418 if (va == NULL) 1419 return (EFAULT); 1420 1421 iov->iov_base = va; 1422 iov->iov_len = n; 1423 iov++; 1424 iovcnt--; 1425 1426 gla += n; 1427 len -= n; 1428 } 1429 return (0); 1430 } 1431 1432 void 1433 vm_copy_teardown(struct vmctx *ctx __unused, int vcpu __unused, 1434 struct iovec *iov __unused, int iovcnt __unused) 1435 { 1436 } 1437 1438 void 1439 vm_copyin(struct vmctx *ctx __unused, int vcpu __unused, struct iovec *iov, 1440 void *vp, size_t len) 1441 { 1442 const char *src; 1443 char *dst; 1444 size_t n; 1445 1446 dst = vp; 1447 while (len) { 1448 assert(iov->iov_len); 1449 n = min(len, iov->iov_len); 1450 src = iov->iov_base; 1451 bcopy(src, dst, n); 1452 1453 iov++; 1454 dst += n; 1455 len -= n; 1456 } 1457 } 1458 1459 void 1460 vm_copyout(struct vmctx *ctx __unused, int vcpu __unused, const void *vp, 1461 struct iovec *iov, size_t len) 1462 { 1463 const char *src; 1464 char *dst; 1465 size_t n; 1466 1467 src = vp; 1468 while (len) { 1469 assert(iov->iov_len); 1470 n = min(len, iov->iov_len); 1471 dst = iov->iov_base; 1472 bcopy(src, dst, n); 1473 1474 iov++; 1475 src += n; 1476 len -= n; 1477 } 1478 } 1479 1480 static int 1481 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1482 { 1483 struct vm_cpuset vm_cpuset; 1484 int error; 1485 1486 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1487 vm_cpuset.which = which; 1488 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1489 vm_cpuset.cpus = cpus; 1490 1491 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1492 return (error); 1493 } 1494 1495 int 1496 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1497 { 1498 1499 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1500 } 1501 1502 int 1503 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1504 { 1505 1506 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1507 } 1508 1509 int 1510 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1511 { 1512 1513 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1514 } 1515 1516 int 1517 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1518 { 1519 struct vm_activate_cpu ac; 1520 int error; 1521 1522 bzero(&ac, sizeof(struct vm_activate_cpu)); 1523 ac.vcpuid = vcpu; 1524 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1525 return (error); 1526 } 1527 1528 int 1529 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1530 { 1531 struct vm_activate_cpu ac; 1532 int error; 1533 1534 bzero(&ac, sizeof(struct vm_activate_cpu)); 1535 ac.vcpuid = vcpu; 1536 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1537 return (error); 1538 } 1539 1540 int 1541 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1542 { 1543 struct vm_activate_cpu ac; 1544 int error; 1545 1546 bzero(&ac, sizeof(struct vm_activate_cpu)); 1547 ac.vcpuid = vcpu; 1548 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1549 return (error); 1550 } 1551 1552 int 1553 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1554 { 1555 struct vm_intinfo vmii; 1556 int error; 1557 1558 bzero(&vmii, sizeof(struct vm_intinfo)); 1559 vmii.vcpuid = vcpu; 1560 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1561 if (error == 0) { 1562 *info1 = vmii.info1; 1563 *info2 = vmii.info2; 1564 } 1565 return (error); 1566 } 1567 1568 int 1569 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1570 { 1571 struct vm_intinfo vmii; 1572 int error; 1573 1574 bzero(&vmii, sizeof(struct vm_intinfo)); 1575 vmii.vcpuid = vcpu; 1576 vmii.info1 = info1; 1577 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1578 return (error); 1579 } 1580 1581 int 1582 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1583 { 1584 struct vm_rtc_data rtcdata; 1585 int error; 1586 1587 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1588 rtcdata.offset = offset; 1589 rtcdata.value = value; 1590 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1591 return (error); 1592 } 1593 1594 int 1595 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1596 { 1597 struct vm_rtc_data rtcdata; 1598 int error; 1599 1600 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1601 rtcdata.offset = offset; 1602 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1603 if (error == 0) 1604 *retval = rtcdata.value; 1605 return (error); 1606 } 1607 1608 int 1609 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1610 { 1611 struct vm_rtc_time rtctime; 1612 int error; 1613 1614 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1615 rtctime.secs = secs; 1616 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1617 return (error); 1618 } 1619 1620 int 1621 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1622 { 1623 struct vm_rtc_time rtctime; 1624 int error; 1625 1626 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1627 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1628 if (error == 0) 1629 *secs = rtctime.secs; 1630 return (error); 1631 } 1632 1633 int 1634 vm_restart_instruction(void *arg, int vcpu) 1635 { 1636 struct vmctx *ctx = arg; 1637 1638 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1639 } 1640 1641 int 1642 vm_snapshot_req(struct vm_snapshot_meta *meta) 1643 { 1644 1645 if (ioctl(meta->ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) { 1646 #ifdef SNAPSHOT_DEBUG 1647 fprintf(stderr, "%s: snapshot failed for %s: %d\r\n", 1648 __func__, meta->dev_name, errno); 1649 #endif 1650 return (-1); 1651 } 1652 return (0); 1653 } 1654 1655 int 1656 vm_restore_time(struct vmctx *ctx) 1657 { 1658 int dummy; 1659 1660 dummy = 0; 1661 return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy)); 1662 } 1663 1664 int 1665 vm_set_topology(struct vmctx *ctx, 1666 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1667 { 1668 struct vm_cpu_topology topology; 1669 1670 bzero(&topology, sizeof (struct vm_cpu_topology)); 1671 topology.sockets = sockets; 1672 topology.cores = cores; 1673 topology.threads = threads; 1674 topology.maxcpus = maxcpus; 1675 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1676 } 1677 1678 int 1679 vm_get_topology(struct vmctx *ctx, 1680 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1681 { 1682 struct vm_cpu_topology topology; 1683 int error; 1684 1685 bzero(&topology, sizeof (struct vm_cpu_topology)); 1686 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1687 if (error == 0) { 1688 *sockets = topology.sockets; 1689 *cores = topology.cores; 1690 *threads = topology.threads; 1691 *maxcpus = topology.maxcpus; 1692 } 1693 return (error); 1694 } 1695 1696 int 1697 vm_get_device_fd(struct vmctx *ctx) 1698 { 1699 1700 return (ctx->fd); 1701 } 1702 1703 const cap_ioctl_t * 1704 vm_get_ioctls(size_t *len) 1705 { 1706 cap_ioctl_t *cmds; 1707 /* keep in sync with machine/vmm_dev.h */ 1708 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1709 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1710 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER, 1711 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1712 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1713 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 1714 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1715 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1716 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1717 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1718 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1719 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1720 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX, 1721 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1722 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1723 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1724 VM_GLA2GPA_NOFAULT, 1725 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1726 VM_SET_INTINFO, VM_GET_INTINFO, 1727 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1728 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY }; 1729 1730 if (len == NULL) { 1731 cmds = malloc(sizeof(vm_ioctl_cmds)); 1732 if (cmds == NULL) 1733 return (NULL); 1734 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1735 return (cmds); 1736 } 1737 1738 *len = nitems(vm_ioctl_cmds); 1739 return (NULL); 1740 } 1741