1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/capsicum.h> 36 #include <sys/sysctl.h> 37 #include <sys/ioctl.h> 38 #include <sys/linker.h> 39 #include <sys/mman.h> 40 #include <sys/module.h> 41 #include <sys/_iovec.h> 42 #include <sys/cpuset.h> 43 44 #include <x86/segments.h> 45 #include <machine/specialreg.h> 46 47 #include <capsicum_helpers.h> 48 #include <errno.h> 49 #include <stdbool.h> 50 #include <stdio.h> 51 #include <stdlib.h> 52 #include <assert.h> 53 #include <string.h> 54 #include <fcntl.h> 55 #include <unistd.h> 56 57 #include <libutil.h> 58 59 #include <vm/vm.h> 60 #include <machine/vmm.h> 61 #include <machine/vmm_dev.h> 62 #include <machine/vmm_snapshot.h> 63 64 #include "vmmapi.h" 65 66 #define MB (1024 * 1024UL) 67 #define GB (1024 * 1024 * 1024UL) 68 69 /* 70 * Size of the guard region before and after the virtual address space 71 * mapping the guest physical memory. This must be a multiple of the 72 * superpage size for performance reasons. 73 */ 74 #define VM_MMAP_GUARD_SIZE (4 * MB) 75 76 #define PROT_RW (PROT_READ | PROT_WRITE) 77 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 78 79 struct vmctx { 80 int fd; 81 uint32_t lowmem_limit; 82 int memflags; 83 size_t lowmem; 84 size_t highmem; 85 char *baseaddr; 86 char *name; 87 }; 88 89 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 90 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 91 92 static int 93 vm_device_open(const char *name) 94 { 95 int fd, len; 96 char *vmfile; 97 98 len = strlen("/dev/vmm/") + strlen(name) + 1; 99 vmfile = malloc(len); 100 assert(vmfile != NULL); 101 snprintf(vmfile, len, "/dev/vmm/%s", name); 102 103 /* Open the device file */ 104 fd = open(vmfile, O_RDWR, 0); 105 106 free(vmfile); 107 return (fd); 108 } 109 110 int 111 vm_create(const char *name) 112 { 113 /* Try to load vmm(4) module before creating a guest. */ 114 if (modfind("vmm") < 0) 115 kldload("vmm"); 116 return (CREATE(name)); 117 } 118 119 struct vmctx * 120 vm_open(const char *name) 121 { 122 struct vmctx *vm; 123 int saved_errno; 124 125 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 126 assert(vm != NULL); 127 128 vm->fd = -1; 129 vm->memflags = 0; 130 vm->lowmem_limit = 3 * GB; 131 vm->name = (char *)(vm + 1); 132 strcpy(vm->name, name); 133 134 if ((vm->fd = vm_device_open(vm->name)) < 0) 135 goto err; 136 137 return (vm); 138 err: 139 saved_errno = errno; 140 free(vm); 141 errno = saved_errno; 142 return (NULL); 143 } 144 145 void 146 vm_close(struct vmctx *vm) 147 { 148 assert(vm != NULL); 149 150 close(vm->fd); 151 free(vm); 152 } 153 154 void 155 vm_destroy(struct vmctx *vm) 156 { 157 assert(vm != NULL); 158 159 if (vm->fd >= 0) 160 close(vm->fd); 161 DESTROY(vm->name); 162 163 free(vm); 164 } 165 166 int 167 vm_parse_memsize(const char *opt, size_t *ret_memsize) 168 { 169 char *endptr; 170 size_t optval; 171 int error; 172 173 optval = strtoul(opt, &endptr, 0); 174 if (*opt != '\0' && *endptr == '\0') { 175 /* 176 * For the sake of backward compatibility if the memory size 177 * specified on the command line is less than a megabyte then 178 * it is interpreted as being in units of MB. 179 */ 180 if (optval < MB) 181 optval *= MB; 182 *ret_memsize = optval; 183 error = 0; 184 } else 185 error = expand_number(opt, ret_memsize); 186 187 return (error); 188 } 189 190 uint32_t 191 vm_get_lowmem_limit(struct vmctx *ctx) 192 { 193 194 return (ctx->lowmem_limit); 195 } 196 197 void 198 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 199 { 200 201 ctx->lowmem_limit = limit; 202 } 203 204 void 205 vm_set_memflags(struct vmctx *ctx, int flags) 206 { 207 208 ctx->memflags = flags; 209 } 210 211 int 212 vm_get_memflags(struct vmctx *ctx) 213 { 214 215 return (ctx->memflags); 216 } 217 218 /* 219 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 220 */ 221 int 222 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 223 size_t len, int prot) 224 { 225 struct vm_memmap memmap; 226 int error, flags; 227 228 memmap.gpa = gpa; 229 memmap.segid = segid; 230 memmap.segoff = off; 231 memmap.len = len; 232 memmap.prot = prot; 233 memmap.flags = 0; 234 235 if (ctx->memflags & VM_MEM_F_WIRED) 236 memmap.flags |= VM_MEMMAP_F_WIRED; 237 238 /* 239 * If this mapping already exists then don't create it again. This 240 * is the common case for SYSMEM mappings created by bhyveload(8). 241 */ 242 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 243 if (error == 0 && gpa == memmap.gpa) { 244 if (segid != memmap.segid || off != memmap.segoff || 245 prot != memmap.prot || flags != memmap.flags) { 246 errno = EEXIST; 247 return (-1); 248 } else { 249 return (0); 250 } 251 } 252 253 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 254 return (error); 255 } 256 257 int 258 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr, 259 size_t *lowmem_size, size_t *highmem_size) 260 { 261 262 *guest_baseaddr = ctx->baseaddr; 263 *lowmem_size = ctx->lowmem; 264 *highmem_size = ctx->highmem; 265 return (0); 266 } 267 268 int 269 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) 270 { 271 struct vm_munmap munmap; 272 int error; 273 274 munmap.gpa = gpa; 275 munmap.len = len; 276 277 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); 278 return (error); 279 } 280 281 int 282 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 283 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 284 { 285 struct vm_memmap memmap; 286 int error; 287 288 bzero(&memmap, sizeof(struct vm_memmap)); 289 memmap.gpa = *gpa; 290 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 291 if (error == 0) { 292 *gpa = memmap.gpa; 293 *segid = memmap.segid; 294 *segoff = memmap.segoff; 295 *len = memmap.len; 296 *prot = memmap.prot; 297 *flags = memmap.flags; 298 } 299 return (error); 300 } 301 302 /* 303 * Return 0 if the segments are identical and non-zero otherwise. 304 * 305 * This is slightly complicated by the fact that only device memory segments 306 * are named. 307 */ 308 static int 309 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 310 { 311 312 if (len == len2) { 313 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 314 return (0); 315 } 316 return (-1); 317 } 318 319 static int 320 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 321 { 322 struct vm_memseg memseg; 323 size_t n; 324 int error; 325 326 /* 327 * If the memory segment has already been created then just return. 328 * This is the usual case for the SYSMEM segment created by userspace 329 * loaders like bhyveload(8). 330 */ 331 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 332 sizeof(memseg.name)); 333 if (error) 334 return (error); 335 336 if (memseg.len != 0) { 337 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 338 errno = EINVAL; 339 return (-1); 340 } else { 341 return (0); 342 } 343 } 344 345 bzero(&memseg, sizeof(struct vm_memseg)); 346 memseg.segid = segid; 347 memseg.len = len; 348 if (name != NULL) { 349 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 350 if (n >= sizeof(memseg.name)) { 351 errno = ENAMETOOLONG; 352 return (-1); 353 } 354 } 355 356 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 357 return (error); 358 } 359 360 int 361 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 362 size_t bufsize) 363 { 364 struct vm_memseg memseg; 365 size_t n; 366 int error; 367 368 memseg.segid = segid; 369 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 370 if (error == 0) { 371 *lenp = memseg.len; 372 n = strlcpy(namebuf, memseg.name, bufsize); 373 if (n >= bufsize) { 374 errno = ENAMETOOLONG; 375 error = -1; 376 } 377 } 378 return (error); 379 } 380 381 static int 382 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 383 { 384 char *ptr; 385 int error, flags; 386 387 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 388 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 389 if (error) 390 return (error); 391 392 flags = MAP_SHARED | MAP_FIXED; 393 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 394 flags |= MAP_NOCORE; 395 396 /* mmap into the process address space on the host */ 397 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 398 if (ptr == MAP_FAILED) 399 return (-1); 400 401 return (0); 402 } 403 404 int 405 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 406 { 407 size_t objsize, len; 408 vm_paddr_t gpa; 409 char *baseaddr, *ptr; 410 int error; 411 412 assert(vms == VM_MMAP_ALL); 413 414 /* 415 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 416 * create another 'highmem' segment above 4GB for the remainder. 417 */ 418 if (memsize > ctx->lowmem_limit) { 419 ctx->lowmem = ctx->lowmem_limit; 420 ctx->highmem = memsize - ctx->lowmem_limit; 421 objsize = 4*GB + ctx->highmem; 422 } else { 423 ctx->lowmem = memsize; 424 ctx->highmem = 0; 425 objsize = ctx->lowmem; 426 } 427 428 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 429 if (error) 430 return (error); 431 432 /* 433 * Stake out a contiguous region covering the guest physical memory 434 * and the adjoining guard regions. 435 */ 436 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 437 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 438 if (ptr == MAP_FAILED) 439 return (-1); 440 441 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 442 if (ctx->highmem > 0) { 443 gpa = 4*GB; 444 len = ctx->highmem; 445 error = setup_memory_segment(ctx, gpa, len, baseaddr); 446 if (error) 447 return (error); 448 } 449 450 if (ctx->lowmem > 0) { 451 gpa = 0; 452 len = ctx->lowmem; 453 error = setup_memory_segment(ctx, gpa, len, baseaddr); 454 if (error) 455 return (error); 456 } 457 458 ctx->baseaddr = baseaddr; 459 460 return (0); 461 } 462 463 /* 464 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 465 * the lowmem or highmem regions. 466 * 467 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 468 * The instruction emulation code depends on this behavior. 469 */ 470 void * 471 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 472 { 473 474 if (ctx->lowmem > 0) { 475 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 476 gaddr + len <= ctx->lowmem) 477 return (ctx->baseaddr + gaddr); 478 } 479 480 if (ctx->highmem > 0) { 481 if (gaddr >= 4*GB) { 482 if (gaddr < 4*GB + ctx->highmem && 483 len <= ctx->highmem && 484 gaddr + len <= 4*GB + ctx->highmem) 485 return (ctx->baseaddr + gaddr); 486 } 487 } 488 489 return (NULL); 490 } 491 492 vm_paddr_t 493 vm_rev_map_gpa(struct vmctx *ctx, void *addr) 494 { 495 vm_paddr_t offaddr; 496 497 offaddr = (char *)addr - ctx->baseaddr; 498 499 if (ctx->lowmem > 0) 500 if (offaddr <= ctx->lowmem) 501 return (offaddr); 502 503 if (ctx->highmem > 0) 504 if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem) 505 return (offaddr); 506 507 return ((vm_paddr_t)-1); 508 } 509 510 const char * 511 vm_get_name(struct vmctx *ctx) 512 { 513 514 return (ctx->name); 515 } 516 517 size_t 518 vm_get_lowmem_size(struct vmctx *ctx) 519 { 520 521 return (ctx->lowmem); 522 } 523 524 size_t 525 vm_get_highmem_size(struct vmctx *ctx) 526 { 527 528 return (ctx->highmem); 529 } 530 531 void * 532 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 533 { 534 char pathname[MAXPATHLEN]; 535 size_t len2; 536 char *base, *ptr; 537 int fd, error, flags; 538 539 fd = -1; 540 ptr = MAP_FAILED; 541 if (name == NULL || strlen(name) == 0) { 542 errno = EINVAL; 543 goto done; 544 } 545 546 error = vm_alloc_memseg(ctx, segid, len, name); 547 if (error) 548 goto done; 549 550 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 551 strlcat(pathname, ctx->name, sizeof(pathname)); 552 strlcat(pathname, ".", sizeof(pathname)); 553 strlcat(pathname, name, sizeof(pathname)); 554 555 fd = open(pathname, O_RDWR); 556 if (fd < 0) 557 goto done; 558 559 /* 560 * Stake out a contiguous region covering the device memory and the 561 * adjoining guard regions. 562 */ 563 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 564 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 565 0); 566 if (base == MAP_FAILED) 567 goto done; 568 569 flags = MAP_SHARED | MAP_FIXED; 570 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 571 flags |= MAP_NOCORE; 572 573 /* mmap the devmem region in the host address space */ 574 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 575 done: 576 if (fd >= 0) 577 close(fd); 578 return (ptr); 579 } 580 581 int 582 vm_set_desc(struct vmctx *ctx, int vcpu, int reg, 583 uint64_t base, uint32_t limit, uint32_t access) 584 { 585 int error; 586 struct vm_seg_desc vmsegdesc; 587 588 bzero(&vmsegdesc, sizeof(vmsegdesc)); 589 vmsegdesc.cpuid = vcpu; 590 vmsegdesc.regnum = reg; 591 vmsegdesc.desc.base = base; 592 vmsegdesc.desc.limit = limit; 593 vmsegdesc.desc.access = access; 594 595 error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 596 return (error); 597 } 598 599 int 600 vm_get_desc(struct vmctx *ctx, int vcpu, int reg, 601 uint64_t *base, uint32_t *limit, uint32_t *access) 602 { 603 int error; 604 struct vm_seg_desc vmsegdesc; 605 606 bzero(&vmsegdesc, sizeof(vmsegdesc)); 607 vmsegdesc.cpuid = vcpu; 608 vmsegdesc.regnum = reg; 609 610 error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 611 if (error == 0) { 612 *base = vmsegdesc.desc.base; 613 *limit = vmsegdesc.desc.limit; 614 *access = vmsegdesc.desc.access; 615 } 616 return (error); 617 } 618 619 int 620 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc) 621 { 622 int error; 623 624 error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit, 625 &seg_desc->access); 626 return (error); 627 } 628 629 int 630 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val) 631 { 632 int error; 633 struct vm_register vmreg; 634 635 bzero(&vmreg, sizeof(vmreg)); 636 vmreg.cpuid = vcpu; 637 vmreg.regnum = reg; 638 vmreg.regval = val; 639 640 error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg); 641 return (error); 642 } 643 644 int 645 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val) 646 { 647 int error; 648 struct vm_register vmreg; 649 650 bzero(&vmreg, sizeof(vmreg)); 651 vmreg.cpuid = vcpu; 652 vmreg.regnum = reg; 653 654 error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg); 655 *ret_val = vmreg.regval; 656 return (error); 657 } 658 659 int 660 vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 661 const int *regnums, uint64_t *regvals) 662 { 663 int error; 664 struct vm_register_set vmregset; 665 666 bzero(&vmregset, sizeof(vmregset)); 667 vmregset.cpuid = vcpu; 668 vmregset.count = count; 669 vmregset.regnums = regnums; 670 vmregset.regvals = regvals; 671 672 error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset); 673 return (error); 674 } 675 676 int 677 vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count, 678 const int *regnums, uint64_t *regvals) 679 { 680 int error; 681 struct vm_register_set vmregset; 682 683 bzero(&vmregset, sizeof(vmregset)); 684 vmregset.cpuid = vcpu; 685 vmregset.count = count; 686 vmregset.regnums = regnums; 687 vmregset.regvals = regvals; 688 689 error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset); 690 return (error); 691 } 692 693 int 694 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit) 695 { 696 int error; 697 struct vm_run vmrun; 698 699 bzero(&vmrun, sizeof(vmrun)); 700 vmrun.cpuid = vcpu; 701 702 error = ioctl(ctx->fd, VM_RUN, &vmrun); 703 bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit)); 704 return (error); 705 } 706 707 int 708 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 709 { 710 struct vm_suspend vmsuspend; 711 712 bzero(&vmsuspend, sizeof(vmsuspend)); 713 vmsuspend.how = how; 714 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 715 } 716 717 int 718 vm_reinit(struct vmctx *ctx) 719 { 720 721 return (ioctl(ctx->fd, VM_REINIT, 0)); 722 } 723 724 int 725 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid, 726 uint32_t errcode, int restart_instruction) 727 { 728 struct vm_exception exc; 729 730 exc.cpuid = vcpu; 731 exc.vector = vector; 732 exc.error_code = errcode; 733 exc.error_code_valid = errcode_valid; 734 exc.restart_instruction = restart_instruction; 735 736 return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc)); 737 } 738 739 int 740 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid) 741 { 742 /* 743 * The apic id associated with the 'vcpu' has the same numerical value 744 * as the 'vcpu' itself. 745 */ 746 return (apicid); 747 } 748 749 int 750 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector) 751 { 752 struct vm_lapic_irq vmirq; 753 754 bzero(&vmirq, sizeof(vmirq)); 755 vmirq.cpuid = vcpu; 756 vmirq.vector = vector; 757 758 return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq)); 759 } 760 761 int 762 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector) 763 { 764 struct vm_lapic_irq vmirq; 765 766 bzero(&vmirq, sizeof(vmirq)); 767 vmirq.cpuid = vcpu; 768 vmirq.vector = vector; 769 770 return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq)); 771 } 772 773 int 774 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 775 { 776 struct vm_lapic_msi vmmsi; 777 778 bzero(&vmmsi, sizeof(vmmsi)); 779 vmmsi.addr = addr; 780 vmmsi.msg = msg; 781 782 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 783 } 784 785 int 786 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 787 { 788 struct vm_ioapic_irq ioapic_irq; 789 790 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 791 ioapic_irq.irq = irq; 792 793 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 794 } 795 796 int 797 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 798 { 799 struct vm_ioapic_irq ioapic_irq; 800 801 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 802 ioapic_irq.irq = irq; 803 804 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 805 } 806 807 int 808 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 809 { 810 struct vm_ioapic_irq ioapic_irq; 811 812 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 813 ioapic_irq.irq = irq; 814 815 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 816 } 817 818 int 819 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 820 { 821 822 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 823 } 824 825 int 826 vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa, 827 bool write, int size, uint64_t *value) 828 { 829 struct vm_readwrite_kernemu_device irp = { 830 .vcpuid = vcpu, 831 .access_width = fls(size) - 1, 832 .gpa = gpa, 833 .value = write ? *value : ~0ul, 834 }; 835 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 836 int rc; 837 838 rc = ioctl(ctx->fd, cmd, &irp); 839 if (rc == 0 && !write) 840 *value = irp.value; 841 return (rc); 842 } 843 844 int 845 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 846 { 847 struct vm_isa_irq isa_irq; 848 849 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 850 isa_irq.atpic_irq = atpic_irq; 851 isa_irq.ioapic_irq = ioapic_irq; 852 853 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 854 } 855 856 int 857 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 858 { 859 struct vm_isa_irq isa_irq; 860 861 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 862 isa_irq.atpic_irq = atpic_irq; 863 isa_irq.ioapic_irq = ioapic_irq; 864 865 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 866 } 867 868 int 869 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 870 { 871 struct vm_isa_irq isa_irq; 872 873 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 874 isa_irq.atpic_irq = atpic_irq; 875 isa_irq.ioapic_irq = ioapic_irq; 876 877 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 878 } 879 880 int 881 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 882 enum vm_intr_trigger trigger) 883 { 884 struct vm_isa_irq_trigger isa_irq_trigger; 885 886 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 887 isa_irq_trigger.atpic_irq = atpic_irq; 888 isa_irq_trigger.trigger = trigger; 889 890 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 891 } 892 893 int 894 vm_inject_nmi(struct vmctx *ctx, int vcpu) 895 { 896 struct vm_nmi vmnmi; 897 898 bzero(&vmnmi, sizeof(vmnmi)); 899 vmnmi.cpuid = vcpu; 900 901 return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi)); 902 } 903 904 static const char *capstrmap[] = { 905 [VM_CAP_HALT_EXIT] = "hlt_exit", 906 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 907 [VM_CAP_PAUSE_EXIT] = "pause_exit", 908 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 909 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 910 [VM_CAP_BPT_EXIT] = "bpt_exit", 911 }; 912 913 int 914 vm_capability_name2type(const char *capname) 915 { 916 int i; 917 918 for (i = 0; i < (int)nitems(capstrmap); i++) { 919 if (strcmp(capstrmap[i], capname) == 0) 920 return (i); 921 } 922 923 return (-1); 924 } 925 926 const char * 927 vm_capability_type2name(int type) 928 { 929 if (type >= 0 && type < (int)nitems(capstrmap)) 930 return (capstrmap[type]); 931 932 return (NULL); 933 } 934 935 int 936 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, 937 int *retval) 938 { 939 int error; 940 struct vm_capability vmcap; 941 942 bzero(&vmcap, sizeof(vmcap)); 943 vmcap.cpuid = vcpu; 944 vmcap.captype = cap; 945 946 error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap); 947 *retval = vmcap.capval; 948 return (error); 949 } 950 951 int 952 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val) 953 { 954 struct vm_capability vmcap; 955 956 bzero(&vmcap, sizeof(vmcap)); 957 vmcap.cpuid = vcpu; 958 vmcap.captype = cap; 959 vmcap.capval = val; 960 961 return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap)); 962 } 963 964 int 965 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 966 { 967 struct vm_pptdev pptdev; 968 969 bzero(&pptdev, sizeof(pptdev)); 970 pptdev.bus = bus; 971 pptdev.slot = slot; 972 pptdev.func = func; 973 974 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 975 } 976 977 int 978 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 979 { 980 struct vm_pptdev pptdev; 981 982 bzero(&pptdev, sizeof(pptdev)); 983 pptdev.bus = bus; 984 pptdev.slot = slot; 985 pptdev.func = func; 986 987 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 988 } 989 990 int 991 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 992 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 993 { 994 struct vm_pptdev_mmio pptmmio; 995 996 bzero(&pptmmio, sizeof(pptmmio)); 997 pptmmio.bus = bus; 998 pptmmio.slot = slot; 999 pptmmio.func = func; 1000 pptmmio.gpa = gpa; 1001 pptmmio.len = len; 1002 pptmmio.hpa = hpa; 1003 1004 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1005 } 1006 1007 int 1008 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1009 vm_paddr_t gpa, size_t len) 1010 { 1011 struct vm_pptdev_mmio pptmmio; 1012 1013 bzero(&pptmmio, sizeof(pptmmio)); 1014 pptmmio.bus = bus; 1015 pptmmio.slot = slot; 1016 pptmmio.func = func; 1017 pptmmio.gpa = gpa; 1018 pptmmio.len = len; 1019 1020 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1021 } 1022 1023 int 1024 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1025 uint64_t addr, uint64_t msg, int numvec) 1026 { 1027 struct vm_pptdev_msi pptmsi; 1028 1029 bzero(&pptmsi, sizeof(pptmsi)); 1030 pptmsi.vcpu = vcpu; 1031 pptmsi.bus = bus; 1032 pptmsi.slot = slot; 1033 pptmsi.func = func; 1034 pptmsi.msg = msg; 1035 pptmsi.addr = addr; 1036 pptmsi.numvec = numvec; 1037 1038 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1039 } 1040 1041 int 1042 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func, 1043 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1044 { 1045 struct vm_pptdev_msix pptmsix; 1046 1047 bzero(&pptmsix, sizeof(pptmsix)); 1048 pptmsix.vcpu = vcpu; 1049 pptmsix.bus = bus; 1050 pptmsix.slot = slot; 1051 pptmsix.func = func; 1052 pptmsix.idx = idx; 1053 pptmsix.msg = msg; 1054 pptmsix.addr = addr; 1055 pptmsix.vector_control = vector_control; 1056 1057 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1058 } 1059 1060 int 1061 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func) 1062 { 1063 struct vm_pptdev ppt; 1064 1065 bzero(&ppt, sizeof(ppt)); 1066 ppt.bus = bus; 1067 ppt.slot = slot; 1068 ppt.func = func; 1069 1070 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt); 1071 } 1072 1073 uint64_t * 1074 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv, 1075 int *ret_entries) 1076 { 1077 static _Thread_local uint64_t *stats_buf; 1078 static _Thread_local u_int stats_count; 1079 uint64_t *new_stats; 1080 struct vm_stats vmstats; 1081 u_int count, index; 1082 bool have_stats; 1083 1084 have_stats = false; 1085 vmstats.cpuid = vcpu; 1086 count = 0; 1087 for (index = 0;; index += nitems(vmstats.statbuf)) { 1088 vmstats.index = index; 1089 if (ioctl(ctx->fd, VM_STATS, &vmstats) != 0) 1090 break; 1091 if (stats_count < index + vmstats.num_entries) { 1092 new_stats = realloc(stats_buf, 1093 (index + vmstats.num_entries) * sizeof(uint64_t)); 1094 if (new_stats == NULL) { 1095 errno = ENOMEM; 1096 return (NULL); 1097 } 1098 stats_count = index + vmstats.num_entries; 1099 stats_buf = new_stats; 1100 } 1101 memcpy(stats_buf + index, vmstats.statbuf, 1102 vmstats.num_entries * sizeof(uint64_t)); 1103 count += vmstats.num_entries; 1104 have_stats = true; 1105 1106 if (vmstats.num_entries != nitems(vmstats.statbuf)) 1107 break; 1108 } 1109 if (have_stats) { 1110 if (ret_entries) 1111 *ret_entries = count; 1112 if (ret_tv) 1113 *ret_tv = vmstats.tv; 1114 return (stats_buf); 1115 } else 1116 return (NULL); 1117 } 1118 1119 const char * 1120 vm_get_stat_desc(struct vmctx *ctx, int index) 1121 { 1122 static struct vm_stat_desc statdesc; 1123 1124 statdesc.index = index; 1125 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1126 return (statdesc.desc); 1127 else 1128 return (NULL); 1129 } 1130 1131 int 1132 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state) 1133 { 1134 int error; 1135 struct vm_x2apic x2apic; 1136 1137 bzero(&x2apic, sizeof(x2apic)); 1138 x2apic.cpuid = vcpu; 1139 1140 error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic); 1141 *state = x2apic.state; 1142 return (error); 1143 } 1144 1145 int 1146 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state) 1147 { 1148 int error; 1149 struct vm_x2apic x2apic; 1150 1151 bzero(&x2apic, sizeof(x2apic)); 1152 x2apic.cpuid = vcpu; 1153 x2apic.state = state; 1154 1155 error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic); 1156 1157 return (error); 1158 } 1159 1160 /* 1161 * From Intel Vol 3a: 1162 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1163 */ 1164 int 1165 vcpu_reset(struct vmctx *vmctx, int vcpu) 1166 { 1167 int error; 1168 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1169 uint32_t desc_access, desc_limit; 1170 uint16_t sel; 1171 1172 zero = 0; 1173 1174 rflags = 0x2; 1175 error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags); 1176 if (error) 1177 goto done; 1178 1179 rip = 0xfff0; 1180 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1181 goto done; 1182 1183 /* 1184 * According to Intels Software Developer Manual CR0 should be 1185 * initialized with CR0_ET | CR0_NW | CR0_CD but that crashes some 1186 * guests like Windows. 1187 */ 1188 cr0 = CR0_NE; 1189 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1190 goto done; 1191 1192 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR2, zero)) != 0) 1193 goto done; 1194 1195 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1196 goto done; 1197 1198 cr4 = 0; 1199 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1200 goto done; 1201 1202 /* 1203 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1204 */ 1205 desc_base = 0xffff0000; 1206 desc_limit = 0xffff; 1207 desc_access = 0x0093; 1208 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS, 1209 desc_base, desc_limit, desc_access); 1210 if (error) 1211 goto done; 1212 1213 sel = 0xf000; 1214 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0) 1215 goto done; 1216 1217 /* 1218 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1219 */ 1220 desc_base = 0; 1221 desc_limit = 0xffff; 1222 desc_access = 0x0093; 1223 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS, 1224 desc_base, desc_limit, desc_access); 1225 if (error) 1226 goto done; 1227 1228 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS, 1229 desc_base, desc_limit, desc_access); 1230 if (error) 1231 goto done; 1232 1233 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES, 1234 desc_base, desc_limit, desc_access); 1235 if (error) 1236 goto done; 1237 1238 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS, 1239 desc_base, desc_limit, desc_access); 1240 if (error) 1241 goto done; 1242 1243 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS, 1244 desc_base, desc_limit, desc_access); 1245 if (error) 1246 goto done; 1247 1248 sel = 0; 1249 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0) 1250 goto done; 1251 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0) 1252 goto done; 1253 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0) 1254 goto done; 1255 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0) 1256 goto done; 1257 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0) 1258 goto done; 1259 1260 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_EFER, zero)) != 0) 1261 goto done; 1262 1263 /* General purpose registers */ 1264 rdx = 0xf00; 1265 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1266 goto done; 1267 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1268 goto done; 1269 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1270 goto done; 1271 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1272 goto done; 1273 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1274 goto done; 1275 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1276 goto done; 1277 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1278 goto done; 1279 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1280 goto done; 1281 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R8, zero)) != 0) 1282 goto done; 1283 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R9, zero)) != 0) 1284 goto done; 1285 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R10, zero)) != 0) 1286 goto done; 1287 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R11, zero)) != 0) 1288 goto done; 1289 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R12, zero)) != 0) 1290 goto done; 1291 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R13, zero)) != 0) 1292 goto done; 1293 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R14, zero)) != 0) 1294 goto done; 1295 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_R15, zero)) != 0) 1296 goto done; 1297 1298 /* GDTR, IDTR */ 1299 desc_base = 0; 1300 desc_limit = 0xffff; 1301 desc_access = 0; 1302 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR, 1303 desc_base, desc_limit, desc_access); 1304 if (error != 0) 1305 goto done; 1306 1307 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR, 1308 desc_base, desc_limit, desc_access); 1309 if (error != 0) 1310 goto done; 1311 1312 /* TR */ 1313 desc_base = 0; 1314 desc_limit = 0xffff; 1315 desc_access = 0x0000008b; 1316 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1317 if (error) 1318 goto done; 1319 1320 sel = 0; 1321 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0) 1322 goto done; 1323 1324 /* LDTR */ 1325 desc_base = 0; 1326 desc_limit = 0xffff; 1327 desc_access = 0x00000082; 1328 error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base, 1329 desc_limit, desc_access); 1330 if (error) 1331 goto done; 1332 1333 sel = 0; 1334 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1335 goto done; 1336 1337 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DR6, 1338 0xffff0ff0)) != 0) 1339 goto done; 1340 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DR7, 0x400)) != 1341 0) 1342 goto done; 1343 1344 if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_INTR_SHADOW, 1345 zero)) != 0) 1346 goto done; 1347 1348 error = 0; 1349 done: 1350 return (error); 1351 } 1352 1353 int 1354 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1355 { 1356 int error, i; 1357 struct vm_gpa_pte gpapte; 1358 1359 bzero(&gpapte, sizeof(gpapte)); 1360 gpapte.gpa = gpa; 1361 1362 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1363 1364 if (error == 0) { 1365 *num = gpapte.ptenum; 1366 for (i = 0; i < gpapte.ptenum; i++) 1367 pte[i] = gpapte.pte[i]; 1368 } 1369 1370 return (error); 1371 } 1372 1373 int 1374 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1375 { 1376 int error; 1377 struct vm_hpet_cap cap; 1378 1379 bzero(&cap, sizeof(struct vm_hpet_cap)); 1380 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1381 if (capabilities != NULL) 1382 *capabilities = cap.capabilities; 1383 return (error); 1384 } 1385 1386 int 1387 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1388 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1389 { 1390 struct vm_gla2gpa gg; 1391 int error; 1392 1393 bzero(&gg, sizeof(struct vm_gla2gpa)); 1394 gg.vcpuid = vcpu; 1395 gg.prot = prot; 1396 gg.gla = gla; 1397 gg.paging = *paging; 1398 1399 error = ioctl(ctx->fd, VM_GLA2GPA, &gg); 1400 if (error == 0) { 1401 *fault = gg.fault; 1402 *gpa = gg.gpa; 1403 } 1404 return (error); 1405 } 1406 1407 int 1408 vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1409 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1410 { 1411 struct vm_gla2gpa gg; 1412 int error; 1413 1414 bzero(&gg, sizeof(struct vm_gla2gpa)); 1415 gg.vcpuid = vcpu; 1416 gg.prot = prot; 1417 gg.gla = gla; 1418 gg.paging = *paging; 1419 1420 error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg); 1421 if (error == 0) { 1422 *fault = gg.fault; 1423 *gpa = gg.gpa; 1424 } 1425 return (error); 1426 } 1427 1428 #ifndef min 1429 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1430 #endif 1431 1432 int 1433 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging, 1434 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1435 int *fault) 1436 { 1437 void *va; 1438 uint64_t gpa, off; 1439 int error, i, n; 1440 1441 for (i = 0; i < iovcnt; i++) { 1442 iov[i].iov_base = 0; 1443 iov[i].iov_len = 0; 1444 } 1445 1446 while (len) { 1447 assert(iovcnt > 0); 1448 error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault); 1449 if (error || *fault) 1450 return (error); 1451 1452 off = gpa & PAGE_MASK; 1453 n = MIN(len, PAGE_SIZE - off); 1454 1455 va = vm_map_gpa(ctx, gpa, n); 1456 if (va == NULL) 1457 return (EFAULT); 1458 1459 iov->iov_base = va; 1460 iov->iov_len = n; 1461 iov++; 1462 iovcnt--; 1463 1464 gla += n; 1465 len -= n; 1466 } 1467 return (0); 1468 } 1469 1470 void 1471 vm_copy_teardown(struct iovec *iov __unused, int iovcnt __unused) 1472 { 1473 /* 1474 * Intentionally empty. This is used by the instruction 1475 * emulation code shared with the kernel. The in-kernel 1476 * version of this is non-empty. 1477 */ 1478 } 1479 1480 void 1481 vm_copyin(struct iovec *iov, void *vp, size_t len) 1482 { 1483 const char *src; 1484 char *dst; 1485 size_t n; 1486 1487 dst = vp; 1488 while (len) { 1489 assert(iov->iov_len); 1490 n = min(len, iov->iov_len); 1491 src = iov->iov_base; 1492 bcopy(src, dst, n); 1493 1494 iov++; 1495 dst += n; 1496 len -= n; 1497 } 1498 } 1499 1500 void 1501 vm_copyout(const void *vp, struct iovec *iov, size_t len) 1502 { 1503 const char *src; 1504 char *dst; 1505 size_t n; 1506 1507 src = vp; 1508 while (len) { 1509 assert(iov->iov_len); 1510 n = min(len, iov->iov_len); 1511 dst = iov->iov_base; 1512 bcopy(src, dst, n); 1513 1514 iov++; 1515 src += n; 1516 len -= n; 1517 } 1518 } 1519 1520 static int 1521 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1522 { 1523 struct vm_cpuset vm_cpuset; 1524 int error; 1525 1526 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1527 vm_cpuset.which = which; 1528 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1529 vm_cpuset.cpus = cpus; 1530 1531 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1532 return (error); 1533 } 1534 1535 int 1536 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1537 { 1538 1539 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1540 } 1541 1542 int 1543 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1544 { 1545 1546 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1547 } 1548 1549 int 1550 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1551 { 1552 1553 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1554 } 1555 1556 int 1557 vm_activate_cpu(struct vmctx *ctx, int vcpu) 1558 { 1559 struct vm_activate_cpu ac; 1560 int error; 1561 1562 bzero(&ac, sizeof(struct vm_activate_cpu)); 1563 ac.vcpuid = vcpu; 1564 error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac); 1565 return (error); 1566 } 1567 1568 int 1569 vm_suspend_cpu(struct vmctx *ctx, int vcpu) 1570 { 1571 struct vm_activate_cpu ac; 1572 int error; 1573 1574 bzero(&ac, sizeof(struct vm_activate_cpu)); 1575 ac.vcpuid = vcpu; 1576 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1577 return (error); 1578 } 1579 1580 int 1581 vm_resume_cpu(struct vmctx *ctx, int vcpu) 1582 { 1583 struct vm_activate_cpu ac; 1584 int error; 1585 1586 bzero(&ac, sizeof(struct vm_activate_cpu)); 1587 ac.vcpuid = vcpu; 1588 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1589 return (error); 1590 } 1591 1592 int 1593 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2) 1594 { 1595 struct vm_intinfo vmii; 1596 int error; 1597 1598 bzero(&vmii, sizeof(struct vm_intinfo)); 1599 vmii.vcpuid = vcpu; 1600 error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii); 1601 if (error == 0) { 1602 *info1 = vmii.info1; 1603 *info2 = vmii.info2; 1604 } 1605 return (error); 1606 } 1607 1608 int 1609 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1) 1610 { 1611 struct vm_intinfo vmii; 1612 int error; 1613 1614 bzero(&vmii, sizeof(struct vm_intinfo)); 1615 vmii.vcpuid = vcpu; 1616 vmii.info1 = info1; 1617 error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii); 1618 return (error); 1619 } 1620 1621 int 1622 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1623 { 1624 struct vm_rtc_data rtcdata; 1625 int error; 1626 1627 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1628 rtcdata.offset = offset; 1629 rtcdata.value = value; 1630 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1631 return (error); 1632 } 1633 1634 int 1635 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1636 { 1637 struct vm_rtc_data rtcdata; 1638 int error; 1639 1640 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1641 rtcdata.offset = offset; 1642 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1643 if (error == 0) 1644 *retval = rtcdata.value; 1645 return (error); 1646 } 1647 1648 int 1649 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1650 { 1651 struct vm_rtc_time rtctime; 1652 int error; 1653 1654 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1655 rtctime.secs = secs; 1656 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1657 return (error); 1658 } 1659 1660 int 1661 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1662 { 1663 struct vm_rtc_time rtctime; 1664 int error; 1665 1666 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1667 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1668 if (error == 0) 1669 *secs = rtctime.secs; 1670 return (error); 1671 } 1672 1673 int 1674 vm_restart_instruction(struct vmctx *ctx, int vcpu) 1675 { 1676 1677 return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu)); 1678 } 1679 1680 int 1681 vm_snapshot_req(struct vm_snapshot_meta *meta) 1682 { 1683 1684 if (ioctl(meta->ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) { 1685 #ifdef SNAPSHOT_DEBUG 1686 fprintf(stderr, "%s: snapshot failed for %s: %d\r\n", 1687 __func__, meta->dev_name, errno); 1688 #endif 1689 return (-1); 1690 } 1691 return (0); 1692 } 1693 1694 int 1695 vm_restore_time(struct vmctx *ctx) 1696 { 1697 int dummy; 1698 1699 dummy = 0; 1700 return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy)); 1701 } 1702 1703 int 1704 vm_set_topology(struct vmctx *ctx, 1705 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1706 { 1707 struct vm_cpu_topology topology; 1708 1709 bzero(&topology, sizeof (struct vm_cpu_topology)); 1710 topology.sockets = sockets; 1711 topology.cores = cores; 1712 topology.threads = threads; 1713 topology.maxcpus = maxcpus; 1714 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1715 } 1716 1717 int 1718 vm_get_topology(struct vmctx *ctx, 1719 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1720 { 1721 struct vm_cpu_topology topology; 1722 int error; 1723 1724 bzero(&topology, sizeof (struct vm_cpu_topology)); 1725 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1726 if (error == 0) { 1727 *sockets = topology.sockets; 1728 *cores = topology.cores; 1729 *threads = topology.threads; 1730 *maxcpus = topology.maxcpus; 1731 } 1732 return (error); 1733 } 1734 1735 /* Keep in sync with machine/vmm_dev.h. */ 1736 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1737 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1738 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER, 1739 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1740 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1741 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 1742 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1743 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1744 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1745 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1746 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1747 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1748 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX, 1749 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1750 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1751 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1752 VM_GLA2GPA_NOFAULT, 1753 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1754 VM_SET_INTINFO, VM_GET_INTINFO, 1755 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1756 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY, 1757 VM_SNAPSHOT_REQ, VM_RESTORE_TIME 1758 }; 1759 1760 int 1761 vm_limit_rights(struct vmctx *ctx) 1762 { 1763 cap_rights_t rights; 1764 size_t ncmds; 1765 1766 cap_rights_init(&rights, CAP_IOCTL, CAP_MMAP_RW); 1767 if (caph_rights_limit(ctx->fd, &rights) != 0) 1768 return (-1); 1769 ncmds = nitems(vm_ioctl_cmds); 1770 if (caph_ioctls_limit(ctx->fd, vm_ioctl_cmds, ncmds) != 0) 1771 return (-1); 1772 return (0); 1773 } 1774 1775 /* 1776 * Avoid using in new code. Operations on the fd should be wrapped here so that 1777 * capability rights can be kept in sync. 1778 */ 1779 int 1780 vm_get_device_fd(struct vmctx *ctx) 1781 { 1782 1783 return (ctx->fd); 1784 } 1785 1786 /* Legacy interface, do not use. */ 1787 const cap_ioctl_t * 1788 vm_get_ioctls(size_t *len) 1789 { 1790 cap_ioctl_t *cmds; 1791 1792 if (len == NULL) { 1793 cmds = malloc(sizeof(vm_ioctl_cmds)); 1794 if (cmds == NULL) 1795 return (NULL); 1796 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1797 return (cmds); 1798 } 1799 1800 *len = nitems(vm_ioctl_cmds); 1801 return (NULL); 1802 } 1803