1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/capsicum.h> 36 #include <sys/sysctl.h> 37 #include <sys/ioctl.h> 38 #include <sys/linker.h> 39 #include <sys/mman.h> 40 #include <sys/module.h> 41 #include <sys/_iovec.h> 42 #include <sys/cpuset.h> 43 44 #include <x86/segments.h> 45 #include <machine/specialreg.h> 46 47 #include <capsicum_helpers.h> 48 #include <errno.h> 49 #include <stdbool.h> 50 #include <stdio.h> 51 #include <stdlib.h> 52 #include <assert.h> 53 #include <string.h> 54 #include <fcntl.h> 55 #include <unistd.h> 56 57 #include <libutil.h> 58 59 #include <vm/vm.h> 60 #include <machine/vmm.h> 61 #include <machine/vmm_dev.h> 62 #include <machine/vmm_snapshot.h> 63 64 #include "vmmapi.h" 65 #include "internal.h" 66 67 #define MB (1024 * 1024UL) 68 #define GB (1024 * 1024 * 1024UL) 69 70 /* 71 * Size of the guard region before and after the virtual address space 72 * mapping the guest physical memory. This must be a multiple of the 73 * superpage size for performance reasons. 74 */ 75 #define VM_MMAP_GUARD_SIZE (4 * MB) 76 77 #define PROT_RW (PROT_READ | PROT_WRITE) 78 #define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC) 79 80 struct vmctx { 81 int fd; 82 uint32_t lowmem_limit; 83 int memflags; 84 size_t lowmem; 85 size_t highmem; 86 char *baseaddr; 87 char *name; 88 }; 89 90 #define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x))) 91 #define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x))) 92 93 static int 94 vm_device_open(const char *name) 95 { 96 int fd, len; 97 char *vmfile; 98 99 len = strlen("/dev/vmm/") + strlen(name) + 1; 100 vmfile = malloc(len); 101 assert(vmfile != NULL); 102 snprintf(vmfile, len, "/dev/vmm/%s", name); 103 104 /* Open the device file */ 105 fd = open(vmfile, O_RDWR, 0); 106 107 free(vmfile); 108 return (fd); 109 } 110 111 int 112 vm_create(const char *name) 113 { 114 /* Try to load vmm(4) module before creating a guest. */ 115 if (modfind("vmm") < 0) 116 kldload("vmm"); 117 return (CREATE(name)); 118 } 119 120 struct vmctx * 121 vm_open(const char *name) 122 { 123 struct vmctx *vm; 124 int saved_errno; 125 126 vm = malloc(sizeof(struct vmctx) + strlen(name) + 1); 127 assert(vm != NULL); 128 129 vm->fd = -1; 130 vm->memflags = 0; 131 vm->lowmem_limit = 3 * GB; 132 vm->name = (char *)(vm + 1); 133 strcpy(vm->name, name); 134 135 if ((vm->fd = vm_device_open(vm->name)) < 0) 136 goto err; 137 138 return (vm); 139 err: 140 saved_errno = errno; 141 free(vm); 142 errno = saved_errno; 143 return (NULL); 144 } 145 146 void 147 vm_close(struct vmctx *vm) 148 { 149 assert(vm != NULL); 150 151 close(vm->fd); 152 free(vm); 153 } 154 155 void 156 vm_destroy(struct vmctx *vm) 157 { 158 assert(vm != NULL); 159 160 if (vm->fd >= 0) 161 close(vm->fd); 162 DESTROY(vm->name); 163 164 free(vm); 165 } 166 167 struct vcpu * 168 vm_vcpu_open(struct vmctx *ctx, int vcpuid) 169 { 170 struct vcpu *vcpu; 171 172 vcpu = malloc(sizeof(*vcpu)); 173 vcpu->ctx = ctx; 174 vcpu->vcpuid = vcpuid; 175 return (vcpu); 176 } 177 178 void 179 vm_vcpu_close(struct vcpu *vcpu) 180 { 181 free(vcpu); 182 } 183 184 int 185 vcpu_id(struct vcpu *vcpu) 186 { 187 return (vcpu->vcpuid); 188 } 189 190 int 191 vm_parse_memsize(const char *opt, size_t *ret_memsize) 192 { 193 char *endptr; 194 size_t optval; 195 int error; 196 197 optval = strtoul(opt, &endptr, 0); 198 if (*opt != '\0' && *endptr == '\0') { 199 /* 200 * For the sake of backward compatibility if the memory size 201 * specified on the command line is less than a megabyte then 202 * it is interpreted as being in units of MB. 203 */ 204 if (optval < MB) 205 optval *= MB; 206 *ret_memsize = optval; 207 error = 0; 208 } else 209 error = expand_number(opt, ret_memsize); 210 211 return (error); 212 } 213 214 uint32_t 215 vm_get_lowmem_limit(struct vmctx *ctx) 216 { 217 218 return (ctx->lowmem_limit); 219 } 220 221 void 222 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit) 223 { 224 225 ctx->lowmem_limit = limit; 226 } 227 228 void 229 vm_set_memflags(struct vmctx *ctx, int flags) 230 { 231 232 ctx->memflags = flags; 233 } 234 235 int 236 vm_get_memflags(struct vmctx *ctx) 237 { 238 239 return (ctx->memflags); 240 } 241 242 /* 243 * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len). 244 */ 245 int 246 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off, 247 size_t len, int prot) 248 { 249 struct vm_memmap memmap; 250 int error, flags; 251 252 memmap.gpa = gpa; 253 memmap.segid = segid; 254 memmap.segoff = off; 255 memmap.len = len; 256 memmap.prot = prot; 257 memmap.flags = 0; 258 259 if (ctx->memflags & VM_MEM_F_WIRED) 260 memmap.flags |= VM_MEMMAP_F_WIRED; 261 262 /* 263 * If this mapping already exists then don't create it again. This 264 * is the common case for SYSMEM mappings created by bhyveload(8). 265 */ 266 error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags); 267 if (error == 0 && gpa == memmap.gpa) { 268 if (segid != memmap.segid || off != memmap.segoff || 269 prot != memmap.prot || flags != memmap.flags) { 270 errno = EEXIST; 271 return (-1); 272 } else { 273 return (0); 274 } 275 } 276 277 error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap); 278 return (error); 279 } 280 281 int 282 vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr, 283 size_t *lowmem_size, size_t *highmem_size) 284 { 285 286 *guest_baseaddr = ctx->baseaddr; 287 *lowmem_size = ctx->lowmem; 288 *highmem_size = ctx->highmem; 289 return (0); 290 } 291 292 int 293 vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len) 294 { 295 struct vm_munmap munmap; 296 int error; 297 298 munmap.gpa = gpa; 299 munmap.len = len; 300 301 error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap); 302 return (error); 303 } 304 305 int 306 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid, 307 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 308 { 309 struct vm_memmap memmap; 310 int error; 311 312 bzero(&memmap, sizeof(struct vm_memmap)); 313 memmap.gpa = *gpa; 314 error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap); 315 if (error == 0) { 316 *gpa = memmap.gpa; 317 *segid = memmap.segid; 318 *segoff = memmap.segoff; 319 *len = memmap.len; 320 *prot = memmap.prot; 321 *flags = memmap.flags; 322 } 323 return (error); 324 } 325 326 /* 327 * Return 0 if the segments are identical and non-zero otherwise. 328 * 329 * This is slightly complicated by the fact that only device memory segments 330 * are named. 331 */ 332 static int 333 cmpseg(size_t len, const char *str, size_t len2, const char *str2) 334 { 335 336 if (len == len2) { 337 if ((!str && !str2) || (str && str2 && !strcmp(str, str2))) 338 return (0); 339 } 340 return (-1); 341 } 342 343 static int 344 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name) 345 { 346 struct vm_memseg memseg; 347 size_t n; 348 int error; 349 350 /* 351 * If the memory segment has already been created then just return. 352 * This is the usual case for the SYSMEM segment created by userspace 353 * loaders like bhyveload(8). 354 */ 355 error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name, 356 sizeof(memseg.name)); 357 if (error) 358 return (error); 359 360 if (memseg.len != 0) { 361 if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) { 362 errno = EINVAL; 363 return (-1); 364 } else { 365 return (0); 366 } 367 } 368 369 bzero(&memseg, sizeof(struct vm_memseg)); 370 memseg.segid = segid; 371 memseg.len = len; 372 if (name != NULL) { 373 n = strlcpy(memseg.name, name, sizeof(memseg.name)); 374 if (n >= sizeof(memseg.name)) { 375 errno = ENAMETOOLONG; 376 return (-1); 377 } 378 } 379 380 error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg); 381 return (error); 382 } 383 384 int 385 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf, 386 size_t bufsize) 387 { 388 struct vm_memseg memseg; 389 size_t n; 390 int error; 391 392 memseg.segid = segid; 393 error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg); 394 if (error == 0) { 395 *lenp = memseg.len; 396 n = strlcpy(namebuf, memseg.name, bufsize); 397 if (n >= bufsize) { 398 errno = ENAMETOOLONG; 399 error = -1; 400 } 401 } 402 return (error); 403 } 404 405 static int 406 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base) 407 { 408 char *ptr; 409 int error, flags; 410 411 /* Map 'len' bytes starting at 'gpa' in the guest address space */ 412 error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL); 413 if (error) 414 return (error); 415 416 flags = MAP_SHARED | MAP_FIXED; 417 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 418 flags |= MAP_NOCORE; 419 420 /* mmap into the process address space on the host */ 421 ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa); 422 if (ptr == MAP_FAILED) 423 return (-1); 424 425 return (0); 426 } 427 428 int 429 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms) 430 { 431 size_t objsize, len; 432 vm_paddr_t gpa; 433 char *baseaddr, *ptr; 434 int error; 435 436 assert(vms == VM_MMAP_ALL); 437 438 /* 439 * If 'memsize' cannot fit entirely in the 'lowmem' segment then 440 * create another 'highmem' segment above 4GB for the remainder. 441 */ 442 if (memsize > ctx->lowmem_limit) { 443 ctx->lowmem = ctx->lowmem_limit; 444 ctx->highmem = memsize - ctx->lowmem_limit; 445 objsize = 4*GB + ctx->highmem; 446 } else { 447 ctx->lowmem = memsize; 448 ctx->highmem = 0; 449 objsize = ctx->lowmem; 450 } 451 452 error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL); 453 if (error) 454 return (error); 455 456 /* 457 * Stake out a contiguous region covering the guest physical memory 458 * and the adjoining guard regions. 459 */ 460 len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE; 461 ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0); 462 if (ptr == MAP_FAILED) 463 return (-1); 464 465 baseaddr = ptr + VM_MMAP_GUARD_SIZE; 466 if (ctx->highmem > 0) { 467 gpa = 4*GB; 468 len = ctx->highmem; 469 error = setup_memory_segment(ctx, gpa, len, baseaddr); 470 if (error) 471 return (error); 472 } 473 474 if (ctx->lowmem > 0) { 475 gpa = 0; 476 len = ctx->lowmem; 477 error = setup_memory_segment(ctx, gpa, len, baseaddr); 478 if (error) 479 return (error); 480 } 481 482 ctx->baseaddr = baseaddr; 483 484 return (0); 485 } 486 487 /* 488 * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in 489 * the lowmem or highmem regions. 490 * 491 * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region. 492 * The instruction emulation code depends on this behavior. 493 */ 494 void * 495 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len) 496 { 497 498 if (ctx->lowmem > 0) { 499 if (gaddr < ctx->lowmem && len <= ctx->lowmem && 500 gaddr + len <= ctx->lowmem) 501 return (ctx->baseaddr + gaddr); 502 } 503 504 if (ctx->highmem > 0) { 505 if (gaddr >= 4*GB) { 506 if (gaddr < 4*GB + ctx->highmem && 507 len <= ctx->highmem && 508 gaddr + len <= 4*GB + ctx->highmem) 509 return (ctx->baseaddr + gaddr); 510 } 511 } 512 513 return (NULL); 514 } 515 516 vm_paddr_t 517 vm_rev_map_gpa(struct vmctx *ctx, void *addr) 518 { 519 vm_paddr_t offaddr; 520 521 offaddr = (char *)addr - ctx->baseaddr; 522 523 if (ctx->lowmem > 0) 524 if (offaddr <= ctx->lowmem) 525 return (offaddr); 526 527 if (ctx->highmem > 0) 528 if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem) 529 return (offaddr); 530 531 return ((vm_paddr_t)-1); 532 } 533 534 const char * 535 vm_get_name(struct vmctx *ctx) 536 { 537 538 return (ctx->name); 539 } 540 541 size_t 542 vm_get_lowmem_size(struct vmctx *ctx) 543 { 544 545 return (ctx->lowmem); 546 } 547 548 size_t 549 vm_get_highmem_size(struct vmctx *ctx) 550 { 551 552 return (ctx->highmem); 553 } 554 555 void * 556 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len) 557 { 558 char pathname[MAXPATHLEN]; 559 size_t len2; 560 char *base, *ptr; 561 int fd, error, flags; 562 563 fd = -1; 564 ptr = MAP_FAILED; 565 if (name == NULL || strlen(name) == 0) { 566 errno = EINVAL; 567 goto done; 568 } 569 570 error = vm_alloc_memseg(ctx, segid, len, name); 571 if (error) 572 goto done; 573 574 strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname)); 575 strlcat(pathname, ctx->name, sizeof(pathname)); 576 strlcat(pathname, ".", sizeof(pathname)); 577 strlcat(pathname, name, sizeof(pathname)); 578 579 fd = open(pathname, O_RDWR); 580 if (fd < 0) 581 goto done; 582 583 /* 584 * Stake out a contiguous region covering the device memory and the 585 * adjoining guard regions. 586 */ 587 len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE; 588 base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 589 0); 590 if (base == MAP_FAILED) 591 goto done; 592 593 flags = MAP_SHARED | MAP_FIXED; 594 if ((ctx->memflags & VM_MEM_F_INCORE) == 0) 595 flags |= MAP_NOCORE; 596 597 /* mmap the devmem region in the host address space */ 598 ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0); 599 done: 600 if (fd >= 0) 601 close(fd); 602 return (ptr); 603 } 604 605 static int 606 vcpu_ioctl(struct vcpu *vcpu, u_long cmd, void *arg) 607 { 608 /* 609 * XXX: fragile, handle with care 610 * Assumes that the first field of the ioctl data 611 * is the vcpuid. 612 */ 613 *(int *)arg = vcpu->vcpuid; 614 return (ioctl(vcpu->ctx->fd, cmd, arg)); 615 } 616 617 int 618 vm_set_desc(struct vcpu *vcpu, int reg, 619 uint64_t base, uint32_t limit, uint32_t access) 620 { 621 int error; 622 struct vm_seg_desc vmsegdesc; 623 624 bzero(&vmsegdesc, sizeof(vmsegdesc)); 625 vmsegdesc.regnum = reg; 626 vmsegdesc.desc.base = base; 627 vmsegdesc.desc.limit = limit; 628 vmsegdesc.desc.access = access; 629 630 error = vcpu_ioctl(vcpu, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc); 631 return (error); 632 } 633 634 int 635 vm_get_desc(struct vcpu *vcpu, int reg, uint64_t *base, uint32_t *limit, 636 uint32_t *access) 637 { 638 int error; 639 struct vm_seg_desc vmsegdesc; 640 641 bzero(&vmsegdesc, sizeof(vmsegdesc)); 642 vmsegdesc.regnum = reg; 643 644 error = vcpu_ioctl(vcpu, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc); 645 if (error == 0) { 646 *base = vmsegdesc.desc.base; 647 *limit = vmsegdesc.desc.limit; 648 *access = vmsegdesc.desc.access; 649 } 650 return (error); 651 } 652 653 int 654 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *seg_desc) 655 { 656 int error; 657 658 error = vm_get_desc(vcpu, reg, &seg_desc->base, &seg_desc->limit, 659 &seg_desc->access); 660 return (error); 661 } 662 663 int 664 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 665 { 666 int error; 667 struct vm_register vmreg; 668 669 bzero(&vmreg, sizeof(vmreg)); 670 vmreg.regnum = reg; 671 vmreg.regval = val; 672 673 error = vcpu_ioctl(vcpu, VM_SET_REGISTER, &vmreg); 674 return (error); 675 } 676 677 int 678 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *ret_val) 679 { 680 int error; 681 struct vm_register vmreg; 682 683 bzero(&vmreg, sizeof(vmreg)); 684 vmreg.regnum = reg; 685 686 error = vcpu_ioctl(vcpu, VM_GET_REGISTER, &vmreg); 687 *ret_val = vmreg.regval; 688 return (error); 689 } 690 691 int 692 vm_set_register_set(struct vcpu *vcpu, unsigned int count, 693 const int *regnums, uint64_t *regvals) 694 { 695 int error; 696 struct vm_register_set vmregset; 697 698 bzero(&vmregset, sizeof(vmregset)); 699 vmregset.count = count; 700 vmregset.regnums = regnums; 701 vmregset.regvals = regvals; 702 703 error = vcpu_ioctl(vcpu, VM_SET_REGISTER_SET, &vmregset); 704 return (error); 705 } 706 707 int 708 vm_get_register_set(struct vcpu *vcpu, unsigned int count, 709 const int *regnums, uint64_t *regvals) 710 { 711 int error; 712 struct vm_register_set vmregset; 713 714 bzero(&vmregset, sizeof(vmregset)); 715 vmregset.count = count; 716 vmregset.regnums = regnums; 717 vmregset.regvals = regvals; 718 719 error = vcpu_ioctl(vcpu, VM_GET_REGISTER_SET, &vmregset); 720 return (error); 721 } 722 723 int 724 vm_run(struct vcpu *vcpu, struct vm_run *vmrun) 725 { 726 return (vcpu_ioctl(vcpu, VM_RUN, vmrun)); 727 } 728 729 int 730 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how) 731 { 732 struct vm_suspend vmsuspend; 733 734 bzero(&vmsuspend, sizeof(vmsuspend)); 735 vmsuspend.how = how; 736 return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend)); 737 } 738 739 int 740 vm_reinit(struct vmctx *ctx) 741 { 742 743 return (ioctl(ctx->fd, VM_REINIT, 0)); 744 } 745 746 int 747 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 748 uint32_t errcode, int restart_instruction) 749 { 750 struct vm_exception exc; 751 752 exc.vector = vector; 753 exc.error_code = errcode; 754 exc.error_code_valid = errcode_valid; 755 exc.restart_instruction = restart_instruction; 756 757 return (vcpu_ioctl(vcpu, VM_INJECT_EXCEPTION, &exc)); 758 } 759 760 int 761 vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid) 762 { 763 /* 764 * The apic id associated with the 'vcpu' has the same numerical value 765 * as the 'vcpu' itself. 766 */ 767 return (apicid); 768 } 769 770 int 771 vm_lapic_irq(struct vcpu *vcpu, int vector) 772 { 773 struct vm_lapic_irq vmirq; 774 775 bzero(&vmirq, sizeof(vmirq)); 776 vmirq.vector = vector; 777 778 return (vcpu_ioctl(vcpu, VM_LAPIC_IRQ, &vmirq)); 779 } 780 781 int 782 vm_lapic_local_irq(struct vcpu *vcpu, int vector) 783 { 784 struct vm_lapic_irq vmirq; 785 786 bzero(&vmirq, sizeof(vmirq)); 787 vmirq.vector = vector; 788 789 return (vcpu_ioctl(vcpu, VM_LAPIC_LOCAL_IRQ, &vmirq)); 790 } 791 792 int 793 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg) 794 { 795 struct vm_lapic_msi vmmsi; 796 797 bzero(&vmmsi, sizeof(vmmsi)); 798 vmmsi.addr = addr; 799 vmmsi.msg = msg; 800 801 return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi)); 802 } 803 804 int 805 vm_ioapic_assert_irq(struct vmctx *ctx, int irq) 806 { 807 struct vm_ioapic_irq ioapic_irq; 808 809 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 810 ioapic_irq.irq = irq; 811 812 return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq)); 813 } 814 815 int 816 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq) 817 { 818 struct vm_ioapic_irq ioapic_irq; 819 820 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 821 ioapic_irq.irq = irq; 822 823 return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq)); 824 } 825 826 int 827 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq) 828 { 829 struct vm_ioapic_irq ioapic_irq; 830 831 bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq)); 832 ioapic_irq.irq = irq; 833 834 return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq)); 835 } 836 837 int 838 vm_ioapic_pincount(struct vmctx *ctx, int *pincount) 839 { 840 841 return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount)); 842 } 843 844 int 845 vm_readwrite_kernemu_device(struct vcpu *vcpu, vm_paddr_t gpa, 846 bool write, int size, uint64_t *value) 847 { 848 struct vm_readwrite_kernemu_device irp = { 849 .access_width = fls(size) - 1, 850 .gpa = gpa, 851 .value = write ? *value : ~0ul, 852 }; 853 long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV); 854 int rc; 855 856 rc = vcpu_ioctl(vcpu, cmd, &irp); 857 if (rc == 0 && !write) 858 *value = irp.value; 859 return (rc); 860 } 861 862 int 863 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 864 { 865 struct vm_isa_irq isa_irq; 866 867 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 868 isa_irq.atpic_irq = atpic_irq; 869 isa_irq.ioapic_irq = ioapic_irq; 870 871 return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq)); 872 } 873 874 int 875 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 876 { 877 struct vm_isa_irq isa_irq; 878 879 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 880 isa_irq.atpic_irq = atpic_irq; 881 isa_irq.ioapic_irq = ioapic_irq; 882 883 return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq)); 884 } 885 886 int 887 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq) 888 { 889 struct vm_isa_irq isa_irq; 890 891 bzero(&isa_irq, sizeof(struct vm_isa_irq)); 892 isa_irq.atpic_irq = atpic_irq; 893 isa_irq.ioapic_irq = ioapic_irq; 894 895 return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq)); 896 } 897 898 int 899 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq, 900 enum vm_intr_trigger trigger) 901 { 902 struct vm_isa_irq_trigger isa_irq_trigger; 903 904 bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger)); 905 isa_irq_trigger.atpic_irq = atpic_irq; 906 isa_irq_trigger.trigger = trigger; 907 908 return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger)); 909 } 910 911 int 912 vm_inject_nmi(struct vcpu *vcpu) 913 { 914 struct vm_nmi vmnmi; 915 916 bzero(&vmnmi, sizeof(vmnmi)); 917 918 return (vcpu_ioctl(vcpu, VM_INJECT_NMI, &vmnmi)); 919 } 920 921 static const char *capstrmap[] = { 922 [VM_CAP_HALT_EXIT] = "hlt_exit", 923 [VM_CAP_MTRAP_EXIT] = "mtrap_exit", 924 [VM_CAP_PAUSE_EXIT] = "pause_exit", 925 [VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest", 926 [VM_CAP_ENABLE_INVPCID] = "enable_invpcid", 927 [VM_CAP_BPT_EXIT] = "bpt_exit", 928 }; 929 930 int 931 vm_capability_name2type(const char *capname) 932 { 933 int i; 934 935 for (i = 0; i < (int)nitems(capstrmap); i++) { 936 if (strcmp(capstrmap[i], capname) == 0) 937 return (i); 938 } 939 940 return (-1); 941 } 942 943 const char * 944 vm_capability_type2name(int type) 945 { 946 if (type >= 0 && type < (int)nitems(capstrmap)) 947 return (capstrmap[type]); 948 949 return (NULL); 950 } 951 952 int 953 vm_get_capability(struct vcpu *vcpu, enum vm_cap_type cap, int *retval) 954 { 955 int error; 956 struct vm_capability vmcap; 957 958 bzero(&vmcap, sizeof(vmcap)); 959 vmcap.captype = cap; 960 961 error = vcpu_ioctl(vcpu, VM_GET_CAPABILITY, &vmcap); 962 *retval = vmcap.capval; 963 return (error); 964 } 965 966 int 967 vm_set_capability(struct vcpu *vcpu, enum vm_cap_type cap, int val) 968 { 969 struct vm_capability vmcap; 970 971 bzero(&vmcap, sizeof(vmcap)); 972 vmcap.captype = cap; 973 vmcap.capval = val; 974 975 return (vcpu_ioctl(vcpu, VM_SET_CAPABILITY, &vmcap)); 976 } 977 978 int 979 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 980 { 981 struct vm_pptdev pptdev; 982 983 bzero(&pptdev, sizeof(pptdev)); 984 pptdev.bus = bus; 985 pptdev.slot = slot; 986 pptdev.func = func; 987 988 return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev)); 989 } 990 991 int 992 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func) 993 { 994 struct vm_pptdev pptdev; 995 996 bzero(&pptdev, sizeof(pptdev)); 997 pptdev.bus = bus; 998 pptdev.slot = slot; 999 pptdev.func = func; 1000 1001 return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev)); 1002 } 1003 1004 int 1005 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1006 vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 1007 { 1008 struct vm_pptdev_mmio pptmmio; 1009 1010 bzero(&pptmmio, sizeof(pptmmio)); 1011 pptmmio.bus = bus; 1012 pptmmio.slot = slot; 1013 pptmmio.func = func; 1014 pptmmio.gpa = gpa; 1015 pptmmio.len = len; 1016 pptmmio.hpa = hpa; 1017 1018 return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio)); 1019 } 1020 1021 int 1022 vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func, 1023 vm_paddr_t gpa, size_t len) 1024 { 1025 struct vm_pptdev_mmio pptmmio; 1026 1027 bzero(&pptmmio, sizeof(pptmmio)); 1028 pptmmio.bus = bus; 1029 pptmmio.slot = slot; 1030 pptmmio.func = func; 1031 pptmmio.gpa = gpa; 1032 pptmmio.len = len; 1033 1034 return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio)); 1035 } 1036 1037 int 1038 vm_setup_pptdev_msi(struct vmctx *ctx, int bus, int slot, int func, 1039 uint64_t addr, uint64_t msg, int numvec) 1040 { 1041 struct vm_pptdev_msi pptmsi; 1042 1043 bzero(&pptmsi, sizeof(pptmsi)); 1044 pptmsi.bus = bus; 1045 pptmsi.slot = slot; 1046 pptmsi.func = func; 1047 pptmsi.msg = msg; 1048 pptmsi.addr = addr; 1049 pptmsi.numvec = numvec; 1050 1051 return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi)); 1052 } 1053 1054 int 1055 vm_setup_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func, 1056 int idx, uint64_t addr, uint64_t msg, uint32_t vector_control) 1057 { 1058 struct vm_pptdev_msix pptmsix; 1059 1060 bzero(&pptmsix, sizeof(pptmsix)); 1061 pptmsix.bus = bus; 1062 pptmsix.slot = slot; 1063 pptmsix.func = func; 1064 pptmsix.idx = idx; 1065 pptmsix.msg = msg; 1066 pptmsix.addr = addr; 1067 pptmsix.vector_control = vector_control; 1068 1069 return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix); 1070 } 1071 1072 int 1073 vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func) 1074 { 1075 struct vm_pptdev ppt; 1076 1077 bzero(&ppt, sizeof(ppt)); 1078 ppt.bus = bus; 1079 ppt.slot = slot; 1080 ppt.func = func; 1081 1082 return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt); 1083 } 1084 1085 uint64_t * 1086 vm_get_stats(struct vcpu *vcpu, struct timeval *ret_tv, 1087 int *ret_entries) 1088 { 1089 static _Thread_local uint64_t *stats_buf; 1090 static _Thread_local u_int stats_count; 1091 uint64_t *new_stats; 1092 struct vm_stats vmstats; 1093 u_int count, index; 1094 bool have_stats; 1095 1096 have_stats = false; 1097 count = 0; 1098 for (index = 0;; index += nitems(vmstats.statbuf)) { 1099 vmstats.index = index; 1100 if (vcpu_ioctl(vcpu, VM_STATS, &vmstats) != 0) 1101 break; 1102 if (stats_count < index + vmstats.num_entries) { 1103 new_stats = realloc(stats_buf, 1104 (index + vmstats.num_entries) * sizeof(uint64_t)); 1105 if (new_stats == NULL) { 1106 errno = ENOMEM; 1107 return (NULL); 1108 } 1109 stats_count = index + vmstats.num_entries; 1110 stats_buf = new_stats; 1111 } 1112 memcpy(stats_buf + index, vmstats.statbuf, 1113 vmstats.num_entries * sizeof(uint64_t)); 1114 count += vmstats.num_entries; 1115 have_stats = true; 1116 1117 if (vmstats.num_entries != nitems(vmstats.statbuf)) 1118 break; 1119 } 1120 if (have_stats) { 1121 if (ret_entries) 1122 *ret_entries = count; 1123 if (ret_tv) 1124 *ret_tv = vmstats.tv; 1125 return (stats_buf); 1126 } else 1127 return (NULL); 1128 } 1129 1130 const char * 1131 vm_get_stat_desc(struct vmctx *ctx, int index) 1132 { 1133 static struct vm_stat_desc statdesc; 1134 1135 statdesc.index = index; 1136 if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0) 1137 return (statdesc.desc); 1138 else 1139 return (NULL); 1140 } 1141 1142 int 1143 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 1144 { 1145 int error; 1146 struct vm_x2apic x2apic; 1147 1148 bzero(&x2apic, sizeof(x2apic)); 1149 1150 error = vcpu_ioctl(vcpu, VM_GET_X2APIC_STATE, &x2apic); 1151 *state = x2apic.state; 1152 return (error); 1153 } 1154 1155 int 1156 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 1157 { 1158 int error; 1159 struct vm_x2apic x2apic; 1160 1161 bzero(&x2apic, sizeof(x2apic)); 1162 x2apic.state = state; 1163 1164 error = vcpu_ioctl(vcpu, VM_SET_X2APIC_STATE, &x2apic); 1165 1166 return (error); 1167 } 1168 1169 /* 1170 * From Intel Vol 3a: 1171 * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT 1172 */ 1173 int 1174 vcpu_reset(struct vcpu *vcpu) 1175 { 1176 int error; 1177 uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx; 1178 uint32_t desc_access, desc_limit; 1179 uint16_t sel; 1180 1181 zero = 0; 1182 1183 rflags = 0x2; 1184 error = vm_set_register(vcpu, VM_REG_GUEST_RFLAGS, rflags); 1185 if (error) 1186 goto done; 1187 1188 rip = 0xfff0; 1189 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RIP, rip)) != 0) 1190 goto done; 1191 1192 /* 1193 * According to Intels Software Developer Manual CR0 should be 1194 * initialized with CR0_ET | CR0_NW | CR0_CD but that crashes some 1195 * guests like Windows. 1196 */ 1197 cr0 = CR0_NE; 1198 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR0, cr0)) != 0) 1199 goto done; 1200 1201 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR2, zero)) != 0) 1202 goto done; 1203 1204 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR3, zero)) != 0) 1205 goto done; 1206 1207 cr4 = 0; 1208 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CR4, cr4)) != 0) 1209 goto done; 1210 1211 /* 1212 * CS: present, r/w, accessed, 16-bit, byte granularity, usable 1213 */ 1214 desc_base = 0xffff0000; 1215 desc_limit = 0xffff; 1216 desc_access = 0x0093; 1217 error = vm_set_desc(vcpu, VM_REG_GUEST_CS, 1218 desc_base, desc_limit, desc_access); 1219 if (error) 1220 goto done; 1221 1222 sel = 0xf000; 1223 if ((error = vm_set_register(vcpu, VM_REG_GUEST_CS, sel)) != 0) 1224 goto done; 1225 1226 /* 1227 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity 1228 */ 1229 desc_base = 0; 1230 desc_limit = 0xffff; 1231 desc_access = 0x0093; 1232 error = vm_set_desc(vcpu, VM_REG_GUEST_SS, 1233 desc_base, desc_limit, desc_access); 1234 if (error) 1235 goto done; 1236 1237 error = vm_set_desc(vcpu, VM_REG_GUEST_DS, 1238 desc_base, desc_limit, desc_access); 1239 if (error) 1240 goto done; 1241 1242 error = vm_set_desc(vcpu, VM_REG_GUEST_ES, 1243 desc_base, desc_limit, desc_access); 1244 if (error) 1245 goto done; 1246 1247 error = vm_set_desc(vcpu, VM_REG_GUEST_FS, 1248 desc_base, desc_limit, desc_access); 1249 if (error) 1250 goto done; 1251 1252 error = vm_set_desc(vcpu, VM_REG_GUEST_GS, 1253 desc_base, desc_limit, desc_access); 1254 if (error) 1255 goto done; 1256 1257 sel = 0; 1258 if ((error = vm_set_register(vcpu, VM_REG_GUEST_SS, sel)) != 0) 1259 goto done; 1260 if ((error = vm_set_register(vcpu, VM_REG_GUEST_DS, sel)) != 0) 1261 goto done; 1262 if ((error = vm_set_register(vcpu, VM_REG_GUEST_ES, sel)) != 0) 1263 goto done; 1264 if ((error = vm_set_register(vcpu, VM_REG_GUEST_FS, sel)) != 0) 1265 goto done; 1266 if ((error = vm_set_register(vcpu, VM_REG_GUEST_GS, sel)) != 0) 1267 goto done; 1268 1269 if ((error = vm_set_register(vcpu, VM_REG_GUEST_EFER, zero)) != 0) 1270 goto done; 1271 1272 /* General purpose registers */ 1273 rdx = 0xf00; 1274 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RAX, zero)) != 0) 1275 goto done; 1276 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RBX, zero)) != 0) 1277 goto done; 1278 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RCX, zero)) != 0) 1279 goto done; 1280 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RDX, rdx)) != 0) 1281 goto done; 1282 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RSI, zero)) != 0) 1283 goto done; 1284 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RDI, zero)) != 0) 1285 goto done; 1286 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RBP, zero)) != 0) 1287 goto done; 1288 if ((error = vm_set_register(vcpu, VM_REG_GUEST_RSP, zero)) != 0) 1289 goto done; 1290 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R8, zero)) != 0) 1291 goto done; 1292 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R9, zero)) != 0) 1293 goto done; 1294 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R10, zero)) != 0) 1295 goto done; 1296 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R11, zero)) != 0) 1297 goto done; 1298 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R12, zero)) != 0) 1299 goto done; 1300 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R13, zero)) != 0) 1301 goto done; 1302 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R14, zero)) != 0) 1303 goto done; 1304 if ((error = vm_set_register(vcpu, VM_REG_GUEST_R15, zero)) != 0) 1305 goto done; 1306 1307 /* GDTR, IDTR */ 1308 desc_base = 0; 1309 desc_limit = 0xffff; 1310 desc_access = 0; 1311 error = vm_set_desc(vcpu, VM_REG_GUEST_GDTR, 1312 desc_base, desc_limit, desc_access); 1313 if (error != 0) 1314 goto done; 1315 1316 error = vm_set_desc(vcpu, VM_REG_GUEST_IDTR, 1317 desc_base, desc_limit, desc_access); 1318 if (error != 0) 1319 goto done; 1320 1321 /* TR */ 1322 desc_base = 0; 1323 desc_limit = 0xffff; 1324 desc_access = 0x0000008b; 1325 error = vm_set_desc(vcpu, VM_REG_GUEST_TR, 0, 0, desc_access); 1326 if (error) 1327 goto done; 1328 1329 sel = 0; 1330 if ((error = vm_set_register(vcpu, VM_REG_GUEST_TR, sel)) != 0) 1331 goto done; 1332 1333 /* LDTR */ 1334 desc_base = 0; 1335 desc_limit = 0xffff; 1336 desc_access = 0x00000082; 1337 error = vm_set_desc(vcpu, VM_REG_GUEST_LDTR, desc_base, 1338 desc_limit, desc_access); 1339 if (error) 1340 goto done; 1341 1342 sel = 0; 1343 if ((error = vm_set_register(vcpu, VM_REG_GUEST_LDTR, 0)) != 0) 1344 goto done; 1345 1346 if ((error = vm_set_register(vcpu, VM_REG_GUEST_DR6, 1347 0xffff0ff0)) != 0) 1348 goto done; 1349 if ((error = vm_set_register(vcpu, VM_REG_GUEST_DR7, 0x400)) != 1350 0) 1351 goto done; 1352 1353 if ((error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 1354 zero)) != 0) 1355 goto done; 1356 1357 error = 0; 1358 done: 1359 return (error); 1360 } 1361 1362 int 1363 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num) 1364 { 1365 int error, i; 1366 struct vm_gpa_pte gpapte; 1367 1368 bzero(&gpapte, sizeof(gpapte)); 1369 gpapte.gpa = gpa; 1370 1371 error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte); 1372 1373 if (error == 0) { 1374 *num = gpapte.ptenum; 1375 for (i = 0; i < gpapte.ptenum; i++) 1376 pte[i] = gpapte.pte[i]; 1377 } 1378 1379 return (error); 1380 } 1381 1382 int 1383 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities) 1384 { 1385 int error; 1386 struct vm_hpet_cap cap; 1387 1388 bzero(&cap, sizeof(struct vm_hpet_cap)); 1389 error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap); 1390 if (capabilities != NULL) 1391 *capabilities = cap.capabilities; 1392 return (error); 1393 } 1394 1395 int 1396 vm_gla2gpa(struct vcpu *vcpu, struct vm_guest_paging *paging, 1397 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1398 { 1399 struct vm_gla2gpa gg; 1400 int error; 1401 1402 bzero(&gg, sizeof(struct vm_gla2gpa)); 1403 gg.prot = prot; 1404 gg.gla = gla; 1405 gg.paging = *paging; 1406 1407 error = vcpu_ioctl(vcpu, VM_GLA2GPA, &gg); 1408 if (error == 0) { 1409 *fault = gg.fault; 1410 *gpa = gg.gpa; 1411 } 1412 return (error); 1413 } 1414 1415 int 1416 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging, 1417 uint64_t gla, int prot, uint64_t *gpa, int *fault) 1418 { 1419 struct vm_gla2gpa gg; 1420 int error; 1421 1422 bzero(&gg, sizeof(struct vm_gla2gpa)); 1423 gg.prot = prot; 1424 gg.gla = gla; 1425 gg.paging = *paging; 1426 1427 error = vcpu_ioctl(vcpu, VM_GLA2GPA_NOFAULT, &gg); 1428 if (error == 0) { 1429 *fault = gg.fault; 1430 *gpa = gg.gpa; 1431 } 1432 return (error); 1433 } 1434 1435 #ifndef min 1436 #define min(a,b) (((a) < (b)) ? (a) : (b)) 1437 #endif 1438 1439 int 1440 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 1441 uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt, 1442 int *fault) 1443 { 1444 void *va; 1445 uint64_t gpa, off; 1446 int error, i, n; 1447 1448 for (i = 0; i < iovcnt; i++) { 1449 iov[i].iov_base = 0; 1450 iov[i].iov_len = 0; 1451 } 1452 1453 while (len) { 1454 assert(iovcnt > 0); 1455 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 1456 if (error || *fault) 1457 return (error); 1458 1459 off = gpa & PAGE_MASK; 1460 n = MIN(len, PAGE_SIZE - off); 1461 1462 va = vm_map_gpa(vcpu->ctx, gpa, n); 1463 if (va == NULL) 1464 return (EFAULT); 1465 1466 iov->iov_base = va; 1467 iov->iov_len = n; 1468 iov++; 1469 iovcnt--; 1470 1471 gla += n; 1472 len -= n; 1473 } 1474 return (0); 1475 } 1476 1477 void 1478 vm_copy_teardown(struct iovec *iov __unused, int iovcnt __unused) 1479 { 1480 /* 1481 * Intentionally empty. This is used by the instruction 1482 * emulation code shared with the kernel. The in-kernel 1483 * version of this is non-empty. 1484 */ 1485 } 1486 1487 void 1488 vm_copyin(struct iovec *iov, void *vp, size_t len) 1489 { 1490 const char *src; 1491 char *dst; 1492 size_t n; 1493 1494 dst = vp; 1495 while (len) { 1496 assert(iov->iov_len); 1497 n = min(len, iov->iov_len); 1498 src = iov->iov_base; 1499 bcopy(src, dst, n); 1500 1501 iov++; 1502 dst += n; 1503 len -= n; 1504 } 1505 } 1506 1507 void 1508 vm_copyout(const void *vp, struct iovec *iov, size_t len) 1509 { 1510 const char *src; 1511 char *dst; 1512 size_t n; 1513 1514 src = vp; 1515 while (len) { 1516 assert(iov->iov_len); 1517 n = min(len, iov->iov_len); 1518 dst = iov->iov_base; 1519 bcopy(src, dst, n); 1520 1521 iov++; 1522 src += n; 1523 len -= n; 1524 } 1525 } 1526 1527 static int 1528 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus) 1529 { 1530 struct vm_cpuset vm_cpuset; 1531 int error; 1532 1533 bzero(&vm_cpuset, sizeof(struct vm_cpuset)); 1534 vm_cpuset.which = which; 1535 vm_cpuset.cpusetsize = sizeof(cpuset_t); 1536 vm_cpuset.cpus = cpus; 1537 1538 error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset); 1539 return (error); 1540 } 1541 1542 int 1543 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus) 1544 { 1545 1546 return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus)); 1547 } 1548 1549 int 1550 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus) 1551 { 1552 1553 return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus)); 1554 } 1555 1556 int 1557 vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus) 1558 { 1559 1560 return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus)); 1561 } 1562 1563 int 1564 vm_activate_cpu(struct vcpu *vcpu) 1565 { 1566 struct vm_activate_cpu ac; 1567 int error; 1568 1569 bzero(&ac, sizeof(struct vm_activate_cpu)); 1570 error = vcpu_ioctl(vcpu, VM_ACTIVATE_CPU, &ac); 1571 return (error); 1572 } 1573 1574 int 1575 vm_suspend_all_cpus(struct vmctx *ctx) 1576 { 1577 struct vm_activate_cpu ac; 1578 int error; 1579 1580 bzero(&ac, sizeof(struct vm_activate_cpu)); 1581 ac.vcpuid = -1; 1582 error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac); 1583 return (error); 1584 } 1585 1586 int 1587 vm_suspend_cpu(struct vcpu *vcpu) 1588 { 1589 struct vm_activate_cpu ac; 1590 int error; 1591 1592 bzero(&ac, sizeof(struct vm_activate_cpu)); 1593 error = vcpu_ioctl(vcpu, VM_SUSPEND_CPU, &ac); 1594 return (error); 1595 } 1596 1597 int 1598 vm_resume_cpu(struct vcpu *vcpu) 1599 { 1600 struct vm_activate_cpu ac; 1601 int error; 1602 1603 bzero(&ac, sizeof(struct vm_activate_cpu)); 1604 error = vcpu_ioctl(vcpu, VM_RESUME_CPU, &ac); 1605 return (error); 1606 } 1607 1608 int 1609 vm_resume_all_cpus(struct vmctx *ctx) 1610 { 1611 struct vm_activate_cpu ac; 1612 int error; 1613 1614 bzero(&ac, sizeof(struct vm_activate_cpu)); 1615 ac.vcpuid = -1; 1616 error = ioctl(ctx->fd, VM_RESUME_CPU, &ac); 1617 return (error); 1618 } 1619 1620 int 1621 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 1622 { 1623 struct vm_intinfo vmii; 1624 int error; 1625 1626 bzero(&vmii, sizeof(struct vm_intinfo)); 1627 error = vcpu_ioctl(vcpu, VM_GET_INTINFO, &vmii); 1628 if (error == 0) { 1629 *info1 = vmii.info1; 1630 *info2 = vmii.info2; 1631 } 1632 return (error); 1633 } 1634 1635 int 1636 vm_set_intinfo(struct vcpu *vcpu, uint64_t info1) 1637 { 1638 struct vm_intinfo vmii; 1639 int error; 1640 1641 bzero(&vmii, sizeof(struct vm_intinfo)); 1642 vmii.info1 = info1; 1643 error = vcpu_ioctl(vcpu, VM_SET_INTINFO, &vmii); 1644 return (error); 1645 } 1646 1647 int 1648 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value) 1649 { 1650 struct vm_rtc_data rtcdata; 1651 int error; 1652 1653 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1654 rtcdata.offset = offset; 1655 rtcdata.value = value; 1656 error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata); 1657 return (error); 1658 } 1659 1660 int 1661 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval) 1662 { 1663 struct vm_rtc_data rtcdata; 1664 int error; 1665 1666 bzero(&rtcdata, sizeof(struct vm_rtc_data)); 1667 rtcdata.offset = offset; 1668 error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata); 1669 if (error == 0) 1670 *retval = rtcdata.value; 1671 return (error); 1672 } 1673 1674 int 1675 vm_rtc_settime(struct vmctx *ctx, time_t secs) 1676 { 1677 struct vm_rtc_time rtctime; 1678 int error; 1679 1680 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1681 rtctime.secs = secs; 1682 error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime); 1683 return (error); 1684 } 1685 1686 int 1687 vm_rtc_gettime(struct vmctx *ctx, time_t *secs) 1688 { 1689 struct vm_rtc_time rtctime; 1690 int error; 1691 1692 bzero(&rtctime, sizeof(struct vm_rtc_time)); 1693 error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime); 1694 if (error == 0) 1695 *secs = rtctime.secs; 1696 return (error); 1697 } 1698 1699 int 1700 vm_restart_instruction(struct vcpu *vcpu) 1701 { 1702 int arg; 1703 1704 return (vcpu_ioctl(vcpu, VM_RESTART_INSTRUCTION, &arg)); 1705 } 1706 1707 int 1708 vm_snapshot_req(struct vmctx *ctx, struct vm_snapshot_meta *meta) 1709 { 1710 1711 if (ioctl(ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) { 1712 #ifdef SNAPSHOT_DEBUG 1713 fprintf(stderr, "%s: snapshot failed for %s: %d\r\n", 1714 __func__, meta->dev_name, errno); 1715 #endif 1716 return (-1); 1717 } 1718 return (0); 1719 } 1720 1721 int 1722 vm_restore_time(struct vmctx *ctx) 1723 { 1724 int dummy; 1725 1726 dummy = 0; 1727 return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy)); 1728 } 1729 1730 int 1731 vm_set_topology(struct vmctx *ctx, 1732 uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus) 1733 { 1734 struct vm_cpu_topology topology; 1735 1736 bzero(&topology, sizeof (struct vm_cpu_topology)); 1737 topology.sockets = sockets; 1738 topology.cores = cores; 1739 topology.threads = threads; 1740 topology.maxcpus = maxcpus; 1741 return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology)); 1742 } 1743 1744 int 1745 vm_get_topology(struct vmctx *ctx, 1746 uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus) 1747 { 1748 struct vm_cpu_topology topology; 1749 int error; 1750 1751 bzero(&topology, sizeof (struct vm_cpu_topology)); 1752 error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology); 1753 if (error == 0) { 1754 *sockets = topology.sockets; 1755 *cores = topology.cores; 1756 *threads = topology.threads; 1757 *maxcpus = topology.maxcpus; 1758 } 1759 return (error); 1760 } 1761 1762 /* Keep in sync with machine/vmm_dev.h. */ 1763 static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT, 1764 VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG, 1765 VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER, 1766 VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR, 1767 VM_SET_REGISTER_SET, VM_GET_REGISTER_SET, 1768 VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV, 1769 VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ, 1770 VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ, 1771 VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ, 1772 VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER, 1773 VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV, 1774 VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI, 1775 VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX, 1776 VM_INJECT_NMI, VM_STATS, VM_STAT_DESC, 1777 VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE, 1778 VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA, 1779 VM_GLA2GPA_NOFAULT, 1780 VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU, 1781 VM_SET_INTINFO, VM_GET_INTINFO, 1782 VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME, 1783 VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY, 1784 VM_SNAPSHOT_REQ, VM_RESTORE_TIME 1785 }; 1786 1787 int 1788 vm_limit_rights(struct vmctx *ctx) 1789 { 1790 cap_rights_t rights; 1791 size_t ncmds; 1792 1793 cap_rights_init(&rights, CAP_IOCTL, CAP_MMAP_RW); 1794 if (caph_rights_limit(ctx->fd, &rights) != 0) 1795 return (-1); 1796 ncmds = nitems(vm_ioctl_cmds); 1797 if (caph_ioctls_limit(ctx->fd, vm_ioctl_cmds, ncmds) != 0) 1798 return (-1); 1799 return (0); 1800 } 1801 1802 /* 1803 * Avoid using in new code. Operations on the fd should be wrapped here so that 1804 * capability rights can be kept in sync. 1805 */ 1806 int 1807 vm_get_device_fd(struct vmctx *ctx) 1808 { 1809 1810 return (ctx->fd); 1811 } 1812 1813 /* Legacy interface, do not use. */ 1814 const cap_ioctl_t * 1815 vm_get_ioctls(size_t *len) 1816 { 1817 cap_ioctl_t *cmds; 1818 1819 if (len == NULL) { 1820 cmds = malloc(sizeof(vm_ioctl_cmds)); 1821 if (cmds == NULL) 1822 return (NULL); 1823 bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds)); 1824 return (cmds); 1825 } 1826 1827 *len = nitems(vm_ioctl_cmds); 1828 return (NULL); 1829 } 1830