xref: /freebsd/lib/libvmmapi/vmmapi.c (revision 298022457a9a016cbdda4e22d751abb5cd91c919)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/sysctl.h>
34 #include <sys/ioctl.h>
35 #include <sys/mman.h>
36 #include <sys/_iovec.h>
37 #include <sys/cpuset.h>
38 
39 #include <x86/segments.h>
40 #include <machine/specialreg.h>
41 #include <machine/param.h>
42 
43 #include <errno.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <assert.h>
47 #include <string.h>
48 #include <fcntl.h>
49 #include <unistd.h>
50 
51 #include <libutil.h>
52 
53 #include <machine/vmm.h>
54 #include <machine/vmm_dev.h>
55 
56 #include "vmmapi.h"
57 
58 #define	MB	(1024 * 1024UL)
59 #define	GB	(1024 * 1024 * 1024UL)
60 
61 /*
62  * Size of the guard region before and after the virtual address space
63  * mapping the guest physical memory. This must be a multiple of the
64  * superpage size for performance reasons.
65  */
66 #define	VM_MMAP_GUARD_SIZE	(4 * MB)
67 
68 #define	PROT_RW		(PROT_READ | PROT_WRITE)
69 #define	PROT_ALL	(PROT_READ | PROT_WRITE | PROT_EXEC)
70 
71 struct vmctx {
72 	int	fd;
73 	uint32_t lowmem_limit;
74 	int	memflags;
75 	size_t	lowmem;
76 	size_t	highmem;
77 	char	*baseaddr;
78 	char	*name;
79 };
80 
81 #define	CREATE(x)  sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
82 #define	DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
83 
84 static int
85 vm_device_open(const char *name)
86 {
87         int fd, len;
88         char *vmfile;
89 
90 	len = strlen("/dev/vmm/") + strlen(name) + 1;
91 	vmfile = malloc(len);
92 	assert(vmfile != NULL);
93 	snprintf(vmfile, len, "/dev/vmm/%s", name);
94 
95         /* Open the device file */
96         fd = open(vmfile, O_RDWR, 0);
97 
98 	free(vmfile);
99         return (fd);
100 }
101 
102 int
103 vm_create(const char *name)
104 {
105 
106 	return (CREATE((char *)name));
107 }
108 
109 struct vmctx *
110 vm_open(const char *name)
111 {
112 	struct vmctx *vm;
113 
114 	vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
115 	assert(vm != NULL);
116 
117 	vm->fd = -1;
118 	vm->memflags = 0;
119 	vm->lowmem_limit = 3 * GB;
120 	vm->name = (char *)(vm + 1);
121 	strcpy(vm->name, name);
122 
123 	if ((vm->fd = vm_device_open(vm->name)) < 0)
124 		goto err;
125 
126 	return (vm);
127 err:
128 	vm_destroy(vm);
129 	return (NULL);
130 }
131 
132 void
133 vm_destroy(struct vmctx *vm)
134 {
135 	assert(vm != NULL);
136 
137 	if (vm->fd >= 0)
138 		close(vm->fd);
139 	DESTROY(vm->name);
140 
141 	free(vm);
142 }
143 
144 int
145 vm_parse_memsize(const char *optarg, size_t *ret_memsize)
146 {
147 	char *endptr;
148 	size_t optval;
149 	int error;
150 
151 	optval = strtoul(optarg, &endptr, 0);
152 	if (*optarg != '\0' && *endptr == '\0') {
153 		/*
154 		 * For the sake of backward compatibility if the memory size
155 		 * specified on the command line is less than a megabyte then
156 		 * it is interpreted as being in units of MB.
157 		 */
158 		if (optval < MB)
159 			optval *= MB;
160 		*ret_memsize = optval;
161 		error = 0;
162 	} else
163 		error = expand_number(optarg, ret_memsize);
164 
165 	return (error);
166 }
167 
168 uint32_t
169 vm_get_lowmem_limit(struct vmctx *ctx)
170 {
171 
172 	return (ctx->lowmem_limit);
173 }
174 
175 void
176 vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
177 {
178 
179 	ctx->lowmem_limit = limit;
180 }
181 
182 void
183 vm_set_memflags(struct vmctx *ctx, int flags)
184 {
185 
186 	ctx->memflags = flags;
187 }
188 
189 int
190 vm_get_memflags(struct vmctx *ctx)
191 {
192 
193 	return (ctx->memflags);
194 }
195 
196 /*
197  * Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
198  */
199 int
200 vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
201     size_t len, int prot)
202 {
203 	struct vm_memmap memmap;
204 	int error, flags;
205 
206 	memmap.gpa = gpa;
207 	memmap.segid = segid;
208 	memmap.segoff = off;
209 	memmap.len = len;
210 	memmap.prot = prot;
211 	memmap.flags = 0;
212 
213 	if (ctx->memflags & VM_MEM_F_WIRED)
214 		memmap.flags |= VM_MEMMAP_F_WIRED;
215 
216 	/*
217 	 * If this mapping already exists then don't create it again. This
218 	 * is the common case for SYSMEM mappings created by bhyveload(8).
219 	 */
220 	error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
221 	if (error == 0 && gpa == memmap.gpa) {
222 		if (segid != memmap.segid || off != memmap.segoff ||
223 		    prot != memmap.prot || flags != memmap.flags) {
224 			errno = EEXIST;
225 			return (-1);
226 		} else {
227 			return (0);
228 		}
229 	}
230 
231 	error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
232 	return (error);
233 }
234 
235 int
236 vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
237     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
238 {
239 	struct vm_memmap memmap;
240 	int error;
241 
242 	bzero(&memmap, sizeof(struct vm_memmap));
243 	memmap.gpa = *gpa;
244 	error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
245 	if (error == 0) {
246 		*gpa = memmap.gpa;
247 		*segid = memmap.segid;
248 		*segoff = memmap.segoff;
249 		*len = memmap.len;
250 		*prot = memmap.prot;
251 		*flags = memmap.flags;
252 	}
253 	return (error);
254 }
255 
256 /*
257  * Return 0 if the segments are identical and non-zero otherwise.
258  *
259  * This is slightly complicated by the fact that only device memory segments
260  * are named.
261  */
262 static int
263 cmpseg(size_t len, const char *str, size_t len2, const char *str2)
264 {
265 
266 	if (len == len2) {
267 		if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
268 			return (0);
269 	}
270 	return (-1);
271 }
272 
273 static int
274 vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
275 {
276 	struct vm_memseg memseg;
277 	size_t n;
278 	int error;
279 
280 	/*
281 	 * If the memory segment has already been created then just return.
282 	 * This is the usual case for the SYSMEM segment created by userspace
283 	 * loaders like bhyveload(8).
284 	 */
285 	error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
286 	    sizeof(memseg.name));
287 	if (error)
288 		return (error);
289 
290 	if (memseg.len != 0) {
291 		if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
292 			errno = EINVAL;
293 			return (-1);
294 		} else {
295 			return (0);
296 		}
297 	}
298 
299 	bzero(&memseg, sizeof(struct vm_memseg));
300 	memseg.segid = segid;
301 	memseg.len = len;
302 	if (name != NULL) {
303 		n = strlcpy(memseg.name, name, sizeof(memseg.name));
304 		if (n >= sizeof(memseg.name)) {
305 			errno = ENAMETOOLONG;
306 			return (-1);
307 		}
308 	}
309 
310 	error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
311 	return (error);
312 }
313 
314 int
315 vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
316     size_t bufsize)
317 {
318 	struct vm_memseg memseg;
319 	size_t n;
320 	int error;
321 
322 	memseg.segid = segid;
323 	error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
324 	if (error == 0) {
325 		*lenp = memseg.len;
326 		n = strlcpy(namebuf, memseg.name, bufsize);
327 		if (n >= bufsize) {
328 			errno = ENAMETOOLONG;
329 			error = -1;
330 		}
331 	}
332 	return (error);
333 }
334 
335 static int
336 setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
337 {
338 	char *ptr;
339 	int error, flags;
340 
341 	/* Map 'len' bytes starting at 'gpa' in the guest address space */
342 	error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
343 	if (error)
344 		return (error);
345 
346 	flags = MAP_SHARED | MAP_FIXED;
347 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
348 		flags |= MAP_NOCORE;
349 
350 	/* mmap into the process address space on the host */
351 	ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
352 	if (ptr == MAP_FAILED)
353 		return (-1);
354 
355 	return (0);
356 }
357 
358 int
359 vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
360 {
361 	size_t objsize, len;
362 	vm_paddr_t gpa;
363 	char *baseaddr, *ptr;
364 	int error, flags;
365 
366 	assert(vms == VM_MMAP_ALL);
367 
368 	/*
369 	 * If 'memsize' cannot fit entirely in the 'lowmem' segment then
370 	 * create another 'highmem' segment above 4GB for the remainder.
371 	 */
372 	if (memsize > ctx->lowmem_limit) {
373 		ctx->lowmem = ctx->lowmem_limit;
374 		ctx->highmem = memsize - ctx->lowmem_limit;
375 		objsize = 4*GB + ctx->highmem;
376 	} else {
377 		ctx->lowmem = memsize;
378 		ctx->highmem = 0;
379 		objsize = ctx->lowmem;
380 	}
381 
382 	error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
383 	if (error)
384 		return (error);
385 
386 	/*
387 	 * Stake out a contiguous region covering the guest physical memory
388 	 * and the adjoining guard regions.
389 	 */
390 	len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
391 	flags = MAP_PRIVATE | MAP_ANON | MAP_NOCORE | MAP_ALIGNED_SUPER;
392 	ptr = mmap(NULL, len, PROT_NONE, flags, -1, 0);
393 	if (ptr == MAP_FAILED)
394 		return (-1);
395 
396 	baseaddr = ptr + VM_MMAP_GUARD_SIZE;
397 	if (ctx->highmem > 0) {
398 		gpa = 4*GB;
399 		len = ctx->highmem;
400 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
401 		if (error)
402 			return (error);
403 	}
404 
405 	if (ctx->lowmem > 0) {
406 		gpa = 0;
407 		len = ctx->lowmem;
408 		error = setup_memory_segment(ctx, gpa, len, baseaddr);
409 		if (error)
410 			return (error);
411 	}
412 
413 	ctx->baseaddr = baseaddr;
414 
415 	return (0);
416 }
417 
418 /*
419  * Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
420  * the lowmem or highmem regions.
421  *
422  * In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
423  * The instruction emulation code depends on this behavior.
424  */
425 void *
426 vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
427 {
428 
429 	if (ctx->lowmem > 0) {
430 		if (gaddr < ctx->lowmem && gaddr + len <= ctx->lowmem)
431 			return (ctx->baseaddr + gaddr);
432 	}
433 
434 	if (ctx->highmem > 0) {
435 		if (gaddr >= 4*GB && gaddr + len <= 4*GB + ctx->highmem)
436 			return (ctx->baseaddr + gaddr);
437 	}
438 
439 	return (NULL);
440 }
441 
442 size_t
443 vm_get_lowmem_size(struct vmctx *ctx)
444 {
445 
446 	return (ctx->lowmem);
447 }
448 
449 size_t
450 vm_get_highmem_size(struct vmctx *ctx)
451 {
452 
453 	return (ctx->highmem);
454 }
455 
456 void *
457 vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
458 {
459 	char pathname[MAXPATHLEN];
460 	size_t len2;
461 	char *base, *ptr;
462 	int fd, error, flags;
463 
464 	fd = -1;
465 	ptr = MAP_FAILED;
466 	if (name == NULL || strlen(name) == 0) {
467 		errno = EINVAL;
468 		goto done;
469 	}
470 
471 	error = vm_alloc_memseg(ctx, segid, len, name);
472 	if (error)
473 		goto done;
474 
475 	strlcpy(pathname, "/dev/vmm/", sizeof(pathname));
476 	strlcat(pathname, ctx->name, sizeof(pathname));
477 	strlcat(pathname, ".", sizeof(pathname));
478 	strlcat(pathname, name, sizeof(pathname));
479 
480 	fd = open(pathname, O_RDWR);
481 	if (fd < 0)
482 		goto done;
483 
484 	/*
485 	 * Stake out a contiguous region covering the device memory and the
486 	 * adjoining guard regions.
487 	 */
488 	len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
489 	flags = MAP_PRIVATE | MAP_ANON | MAP_NOCORE | MAP_ALIGNED_SUPER;
490 	base = mmap(NULL, len2, PROT_NONE, flags, -1, 0);
491 	if (base == MAP_FAILED)
492 		goto done;
493 
494 	flags = MAP_SHARED | MAP_FIXED;
495 	if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
496 		flags |= MAP_NOCORE;
497 
498 	/* mmap the devmem region in the host address space */
499 	ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
500 done:
501 	if (fd >= 0)
502 		close(fd);
503 	return (ptr);
504 }
505 
506 int
507 vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
508 	    uint64_t base, uint32_t limit, uint32_t access)
509 {
510 	int error;
511 	struct vm_seg_desc vmsegdesc;
512 
513 	bzero(&vmsegdesc, sizeof(vmsegdesc));
514 	vmsegdesc.cpuid = vcpu;
515 	vmsegdesc.regnum = reg;
516 	vmsegdesc.desc.base = base;
517 	vmsegdesc.desc.limit = limit;
518 	vmsegdesc.desc.access = access;
519 
520 	error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
521 	return (error);
522 }
523 
524 int
525 vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
526 	    uint64_t *base, uint32_t *limit, uint32_t *access)
527 {
528 	int error;
529 	struct vm_seg_desc vmsegdesc;
530 
531 	bzero(&vmsegdesc, sizeof(vmsegdesc));
532 	vmsegdesc.cpuid = vcpu;
533 	vmsegdesc.regnum = reg;
534 
535 	error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
536 	if (error == 0) {
537 		*base = vmsegdesc.desc.base;
538 		*limit = vmsegdesc.desc.limit;
539 		*access = vmsegdesc.desc.access;
540 	}
541 	return (error);
542 }
543 
544 int
545 vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
546 {
547 	int error;
548 
549 	error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
550 	    &seg_desc->access);
551 	return (error);
552 }
553 
554 int
555 vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
556 {
557 	int error;
558 	struct vm_register vmreg;
559 
560 	bzero(&vmreg, sizeof(vmreg));
561 	vmreg.cpuid = vcpu;
562 	vmreg.regnum = reg;
563 	vmreg.regval = val;
564 
565 	error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
566 	return (error);
567 }
568 
569 int
570 vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
571 {
572 	int error;
573 	struct vm_register vmreg;
574 
575 	bzero(&vmreg, sizeof(vmreg));
576 	vmreg.cpuid = vcpu;
577 	vmreg.regnum = reg;
578 
579 	error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
580 	*ret_val = vmreg.regval;
581 	return (error);
582 }
583 
584 int
585 vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit)
586 {
587 	int error;
588 	struct vm_run vmrun;
589 
590 	bzero(&vmrun, sizeof(vmrun));
591 	vmrun.cpuid = vcpu;
592 
593 	error = ioctl(ctx->fd, VM_RUN, &vmrun);
594 	bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit));
595 	return (error);
596 }
597 
598 int
599 vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
600 {
601 	struct vm_suspend vmsuspend;
602 
603 	bzero(&vmsuspend, sizeof(vmsuspend));
604 	vmsuspend.how = how;
605 	return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
606 }
607 
608 int
609 vm_reinit(struct vmctx *ctx)
610 {
611 
612 	return (ioctl(ctx->fd, VM_REINIT, 0));
613 }
614 
615 int
616 vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
617     uint32_t errcode, int restart_instruction)
618 {
619 	struct vm_exception exc;
620 
621 	exc.cpuid = vcpu;
622 	exc.vector = vector;
623 	exc.error_code = errcode;
624 	exc.error_code_valid = errcode_valid;
625 	exc.restart_instruction = restart_instruction;
626 
627 	return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
628 }
629 
630 int
631 vm_apicid2vcpu(struct vmctx *ctx, int apicid)
632 {
633 	/*
634 	 * The apic id associated with the 'vcpu' has the same numerical value
635 	 * as the 'vcpu' itself.
636 	 */
637 	return (apicid);
638 }
639 
640 int
641 vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
642 {
643 	struct vm_lapic_irq vmirq;
644 
645 	bzero(&vmirq, sizeof(vmirq));
646 	vmirq.cpuid = vcpu;
647 	vmirq.vector = vector;
648 
649 	return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
650 }
651 
652 int
653 vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
654 {
655 	struct vm_lapic_irq vmirq;
656 
657 	bzero(&vmirq, sizeof(vmirq));
658 	vmirq.cpuid = vcpu;
659 	vmirq.vector = vector;
660 
661 	return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
662 }
663 
664 int
665 vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
666 {
667 	struct vm_lapic_msi vmmsi;
668 
669 	bzero(&vmmsi, sizeof(vmmsi));
670 	vmmsi.addr = addr;
671 	vmmsi.msg = msg;
672 
673 	return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
674 }
675 
676 int
677 vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
678 {
679 	struct vm_ioapic_irq ioapic_irq;
680 
681 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
682 	ioapic_irq.irq = irq;
683 
684 	return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
685 }
686 
687 int
688 vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
689 {
690 	struct vm_ioapic_irq ioapic_irq;
691 
692 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
693 	ioapic_irq.irq = irq;
694 
695 	return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
696 }
697 
698 int
699 vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
700 {
701 	struct vm_ioapic_irq ioapic_irq;
702 
703 	bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
704 	ioapic_irq.irq = irq;
705 
706 	return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
707 }
708 
709 int
710 vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
711 {
712 
713 	return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
714 }
715 
716 int
717 vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
718 {
719 	struct vm_isa_irq isa_irq;
720 
721 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
722 	isa_irq.atpic_irq = atpic_irq;
723 	isa_irq.ioapic_irq = ioapic_irq;
724 
725 	return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
726 }
727 
728 int
729 vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
730 {
731 	struct vm_isa_irq isa_irq;
732 
733 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
734 	isa_irq.atpic_irq = atpic_irq;
735 	isa_irq.ioapic_irq = ioapic_irq;
736 
737 	return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
738 }
739 
740 int
741 vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
742 {
743 	struct vm_isa_irq isa_irq;
744 
745 	bzero(&isa_irq, sizeof(struct vm_isa_irq));
746 	isa_irq.atpic_irq = atpic_irq;
747 	isa_irq.ioapic_irq = ioapic_irq;
748 
749 	return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
750 }
751 
752 int
753 vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
754     enum vm_intr_trigger trigger)
755 {
756 	struct vm_isa_irq_trigger isa_irq_trigger;
757 
758 	bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
759 	isa_irq_trigger.atpic_irq = atpic_irq;
760 	isa_irq_trigger.trigger = trigger;
761 
762 	return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
763 }
764 
765 int
766 vm_inject_nmi(struct vmctx *ctx, int vcpu)
767 {
768 	struct vm_nmi vmnmi;
769 
770 	bzero(&vmnmi, sizeof(vmnmi));
771 	vmnmi.cpuid = vcpu;
772 
773 	return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
774 }
775 
776 static struct {
777 	const char	*name;
778 	int		type;
779 } capstrmap[] = {
780 	{ "hlt_exit",		VM_CAP_HALT_EXIT },
781 	{ "mtrap_exit",		VM_CAP_MTRAP_EXIT },
782 	{ "pause_exit",		VM_CAP_PAUSE_EXIT },
783 	{ "unrestricted_guest",	VM_CAP_UNRESTRICTED_GUEST },
784 	{ "enable_invpcid",	VM_CAP_ENABLE_INVPCID },
785 	{ 0 }
786 };
787 
788 int
789 vm_capability_name2type(const char *capname)
790 {
791 	int i;
792 
793 	for (i = 0; capstrmap[i].name != NULL && capname != NULL; i++) {
794 		if (strcmp(capstrmap[i].name, capname) == 0)
795 			return (capstrmap[i].type);
796 	}
797 
798 	return (-1);
799 }
800 
801 const char *
802 vm_capability_type2name(int type)
803 {
804 	int i;
805 
806 	for (i = 0; capstrmap[i].name != NULL; i++) {
807 		if (capstrmap[i].type == type)
808 			return (capstrmap[i].name);
809 	}
810 
811 	return (NULL);
812 }
813 
814 int
815 vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
816 		  int *retval)
817 {
818 	int error;
819 	struct vm_capability vmcap;
820 
821 	bzero(&vmcap, sizeof(vmcap));
822 	vmcap.cpuid = vcpu;
823 	vmcap.captype = cap;
824 
825 	error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
826 	*retval = vmcap.capval;
827 	return (error);
828 }
829 
830 int
831 vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
832 {
833 	struct vm_capability vmcap;
834 
835 	bzero(&vmcap, sizeof(vmcap));
836 	vmcap.cpuid = vcpu;
837 	vmcap.captype = cap;
838 	vmcap.capval = val;
839 
840 	return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
841 }
842 
843 int
844 vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
845 {
846 	struct vm_pptdev pptdev;
847 
848 	bzero(&pptdev, sizeof(pptdev));
849 	pptdev.bus = bus;
850 	pptdev.slot = slot;
851 	pptdev.func = func;
852 
853 	return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
854 }
855 
856 int
857 vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
858 {
859 	struct vm_pptdev pptdev;
860 
861 	bzero(&pptdev, sizeof(pptdev));
862 	pptdev.bus = bus;
863 	pptdev.slot = slot;
864 	pptdev.func = func;
865 
866 	return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
867 }
868 
869 int
870 vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
871 		   vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
872 {
873 	struct vm_pptdev_mmio pptmmio;
874 
875 	bzero(&pptmmio, sizeof(pptmmio));
876 	pptmmio.bus = bus;
877 	pptmmio.slot = slot;
878 	pptmmio.func = func;
879 	pptmmio.gpa = gpa;
880 	pptmmio.len = len;
881 	pptmmio.hpa = hpa;
882 
883 	return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
884 }
885 
886 int
887 vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
888     uint64_t addr, uint64_t msg, int numvec)
889 {
890 	struct vm_pptdev_msi pptmsi;
891 
892 	bzero(&pptmsi, sizeof(pptmsi));
893 	pptmsi.vcpu = vcpu;
894 	pptmsi.bus = bus;
895 	pptmsi.slot = slot;
896 	pptmsi.func = func;
897 	pptmsi.msg = msg;
898 	pptmsi.addr = addr;
899 	pptmsi.numvec = numvec;
900 
901 	return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
902 }
903 
904 int
905 vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
906     int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
907 {
908 	struct vm_pptdev_msix pptmsix;
909 
910 	bzero(&pptmsix, sizeof(pptmsix));
911 	pptmsix.vcpu = vcpu;
912 	pptmsix.bus = bus;
913 	pptmsix.slot = slot;
914 	pptmsix.func = func;
915 	pptmsix.idx = idx;
916 	pptmsix.msg = msg;
917 	pptmsix.addr = addr;
918 	pptmsix.vector_control = vector_control;
919 
920 	return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
921 }
922 
923 uint64_t *
924 vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
925 	     int *ret_entries)
926 {
927 	int error;
928 
929 	static struct vm_stats vmstats;
930 
931 	vmstats.cpuid = vcpu;
932 
933 	error = ioctl(ctx->fd, VM_STATS, &vmstats);
934 	if (error == 0) {
935 		if (ret_entries)
936 			*ret_entries = vmstats.num_entries;
937 		if (ret_tv)
938 			*ret_tv = vmstats.tv;
939 		return (vmstats.statbuf);
940 	} else
941 		return (NULL);
942 }
943 
944 const char *
945 vm_get_stat_desc(struct vmctx *ctx, int index)
946 {
947 	static struct vm_stat_desc statdesc;
948 
949 	statdesc.index = index;
950 	if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
951 		return (statdesc.desc);
952 	else
953 		return (NULL);
954 }
955 
956 int
957 vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
958 {
959 	int error;
960 	struct vm_x2apic x2apic;
961 
962 	bzero(&x2apic, sizeof(x2apic));
963 	x2apic.cpuid = vcpu;
964 
965 	error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
966 	*state = x2apic.state;
967 	return (error);
968 }
969 
970 int
971 vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
972 {
973 	int error;
974 	struct vm_x2apic x2apic;
975 
976 	bzero(&x2apic, sizeof(x2apic));
977 	x2apic.cpuid = vcpu;
978 	x2apic.state = state;
979 
980 	error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
981 
982 	return (error);
983 }
984 
985 /*
986  * From Intel Vol 3a:
987  * Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
988  */
989 int
990 vcpu_reset(struct vmctx *vmctx, int vcpu)
991 {
992 	int error;
993 	uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
994 	uint32_t desc_access, desc_limit;
995 	uint16_t sel;
996 
997 	zero = 0;
998 
999 	rflags = 0x2;
1000 	error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
1001 	if (error)
1002 		goto done;
1003 
1004 	rip = 0xfff0;
1005 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
1006 		goto done;
1007 
1008 	cr0 = CR0_NE;
1009 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
1010 		goto done;
1011 
1012 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
1013 		goto done;
1014 
1015 	cr4 = 0;
1016 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
1017 		goto done;
1018 
1019 	/*
1020 	 * CS: present, r/w, accessed, 16-bit, byte granularity, usable
1021 	 */
1022 	desc_base = 0xffff0000;
1023 	desc_limit = 0xffff;
1024 	desc_access = 0x0093;
1025 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
1026 			    desc_base, desc_limit, desc_access);
1027 	if (error)
1028 		goto done;
1029 
1030 	sel = 0xf000;
1031 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
1032 		goto done;
1033 
1034 	/*
1035 	 * SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
1036 	 */
1037 	desc_base = 0;
1038 	desc_limit = 0xffff;
1039 	desc_access = 0x0093;
1040 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
1041 			    desc_base, desc_limit, desc_access);
1042 	if (error)
1043 		goto done;
1044 
1045 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
1046 			    desc_base, desc_limit, desc_access);
1047 	if (error)
1048 		goto done;
1049 
1050 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
1051 			    desc_base, desc_limit, desc_access);
1052 	if (error)
1053 		goto done;
1054 
1055 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
1056 			    desc_base, desc_limit, desc_access);
1057 	if (error)
1058 		goto done;
1059 
1060 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
1061 			    desc_base, desc_limit, desc_access);
1062 	if (error)
1063 		goto done;
1064 
1065 	sel = 0;
1066 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
1067 		goto done;
1068 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
1069 		goto done;
1070 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
1071 		goto done;
1072 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
1073 		goto done;
1074 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
1075 		goto done;
1076 
1077 	/* General purpose registers */
1078 	rdx = 0xf00;
1079 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
1080 		goto done;
1081 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
1082 		goto done;
1083 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
1084 		goto done;
1085 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
1086 		goto done;
1087 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
1088 		goto done;
1089 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
1090 		goto done;
1091 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
1092 		goto done;
1093 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
1094 		goto done;
1095 
1096 	/* GDTR, IDTR */
1097 	desc_base = 0;
1098 	desc_limit = 0xffff;
1099 	desc_access = 0;
1100 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
1101 			    desc_base, desc_limit, desc_access);
1102 	if (error != 0)
1103 		goto done;
1104 
1105 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
1106 			    desc_base, desc_limit, desc_access);
1107 	if (error != 0)
1108 		goto done;
1109 
1110 	/* TR */
1111 	desc_base = 0;
1112 	desc_limit = 0xffff;
1113 	desc_access = 0x0000008b;
1114 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
1115 	if (error)
1116 		goto done;
1117 
1118 	sel = 0;
1119 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
1120 		goto done;
1121 
1122 	/* LDTR */
1123 	desc_base = 0;
1124 	desc_limit = 0xffff;
1125 	desc_access = 0x00000082;
1126 	error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
1127 			    desc_limit, desc_access);
1128 	if (error)
1129 		goto done;
1130 
1131 	sel = 0;
1132 	if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
1133 		goto done;
1134 
1135 	/* XXX cr2, debug registers */
1136 
1137 	error = 0;
1138 done:
1139 	return (error);
1140 }
1141 
1142 int
1143 vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
1144 {
1145 	int error, i;
1146 	struct vm_gpa_pte gpapte;
1147 
1148 	bzero(&gpapte, sizeof(gpapte));
1149 	gpapte.gpa = gpa;
1150 
1151 	error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
1152 
1153 	if (error == 0) {
1154 		*num = gpapte.ptenum;
1155 		for (i = 0; i < gpapte.ptenum; i++)
1156 			pte[i] = gpapte.pte[i];
1157 	}
1158 
1159 	return (error);
1160 }
1161 
1162 int
1163 vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
1164 {
1165 	int error;
1166 	struct vm_hpet_cap cap;
1167 
1168 	bzero(&cap, sizeof(struct vm_hpet_cap));
1169 	error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
1170 	if (capabilities != NULL)
1171 		*capabilities = cap.capabilities;
1172 	return (error);
1173 }
1174 
1175 int
1176 vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1177     uint64_t gla, int prot, uint64_t *gpa, int *fault)
1178 {
1179 	struct vm_gla2gpa gg;
1180 	int error;
1181 
1182 	bzero(&gg, sizeof(struct vm_gla2gpa));
1183 	gg.vcpuid = vcpu;
1184 	gg.prot = prot;
1185 	gg.gla = gla;
1186 	gg.paging = *paging;
1187 
1188 	error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
1189 	if (error == 0) {
1190 		*fault = gg.fault;
1191 		*gpa = gg.gpa;
1192 	}
1193 	return (error);
1194 }
1195 
1196 #ifndef min
1197 #define	min(a,b)	(((a) < (b)) ? (a) : (b))
1198 #endif
1199 
1200 int
1201 vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
1202     uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
1203     int *fault)
1204 {
1205 	void *va;
1206 	uint64_t gpa;
1207 	int error, i, n, off;
1208 
1209 	for (i = 0; i < iovcnt; i++) {
1210 		iov[i].iov_base = 0;
1211 		iov[i].iov_len = 0;
1212 	}
1213 
1214 	while (len) {
1215 		assert(iovcnt > 0);
1216 		error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
1217 		if (error || *fault)
1218 			return (error);
1219 
1220 		off = gpa & PAGE_MASK;
1221 		n = min(len, PAGE_SIZE - off);
1222 
1223 		va = vm_map_gpa(ctx, gpa, n);
1224 		if (va == NULL)
1225 			return (EFAULT);
1226 
1227 		iov->iov_base = va;
1228 		iov->iov_len = n;
1229 		iov++;
1230 		iovcnt--;
1231 
1232 		gla += n;
1233 		len -= n;
1234 	}
1235 	return (0);
1236 }
1237 
1238 void
1239 vm_copy_teardown(struct vmctx *ctx, int vcpu, struct iovec *iov, int iovcnt)
1240 {
1241 
1242 	return;
1243 }
1244 
1245 void
1246 vm_copyin(struct vmctx *ctx, int vcpu, struct iovec *iov, void *vp, size_t len)
1247 {
1248 	const char *src;
1249 	char *dst;
1250 	size_t n;
1251 
1252 	dst = vp;
1253 	while (len) {
1254 		assert(iov->iov_len);
1255 		n = min(len, iov->iov_len);
1256 		src = iov->iov_base;
1257 		bcopy(src, dst, n);
1258 
1259 		iov++;
1260 		dst += n;
1261 		len -= n;
1262 	}
1263 }
1264 
1265 void
1266 vm_copyout(struct vmctx *ctx, int vcpu, const void *vp, struct iovec *iov,
1267     size_t len)
1268 {
1269 	const char *src;
1270 	char *dst;
1271 	size_t n;
1272 
1273 	src = vp;
1274 	while (len) {
1275 		assert(iov->iov_len);
1276 		n = min(len, iov->iov_len);
1277 		dst = iov->iov_base;
1278 		bcopy(src, dst, n);
1279 
1280 		iov++;
1281 		src += n;
1282 		len -= n;
1283 	}
1284 }
1285 
1286 static int
1287 vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
1288 {
1289 	struct vm_cpuset vm_cpuset;
1290 	int error;
1291 
1292 	bzero(&vm_cpuset, sizeof(struct vm_cpuset));
1293 	vm_cpuset.which = which;
1294 	vm_cpuset.cpusetsize = sizeof(cpuset_t);
1295 	vm_cpuset.cpus = cpus;
1296 
1297 	error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
1298 	return (error);
1299 }
1300 
1301 int
1302 vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
1303 {
1304 
1305 	return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
1306 }
1307 
1308 int
1309 vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
1310 {
1311 
1312 	return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
1313 }
1314 
1315 int
1316 vm_activate_cpu(struct vmctx *ctx, int vcpu)
1317 {
1318 	struct vm_activate_cpu ac;
1319 	int error;
1320 
1321 	bzero(&ac, sizeof(struct vm_activate_cpu));
1322 	ac.vcpuid = vcpu;
1323 	error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
1324 	return (error);
1325 }
1326 
1327 int
1328 vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
1329 {
1330 	struct vm_intinfo vmii;
1331 	int error;
1332 
1333 	bzero(&vmii, sizeof(struct vm_intinfo));
1334 	vmii.vcpuid = vcpu;
1335 	error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
1336 	if (error == 0) {
1337 		*info1 = vmii.info1;
1338 		*info2 = vmii.info2;
1339 	}
1340 	return (error);
1341 }
1342 
1343 int
1344 vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
1345 {
1346 	struct vm_intinfo vmii;
1347 	int error;
1348 
1349 	bzero(&vmii, sizeof(struct vm_intinfo));
1350 	vmii.vcpuid = vcpu;
1351 	vmii.info1 = info1;
1352 	error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
1353 	return (error);
1354 }
1355 
1356 int
1357 vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
1358 {
1359 	struct vm_rtc_data rtcdata;
1360 	int error;
1361 
1362 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1363 	rtcdata.offset = offset;
1364 	rtcdata.value = value;
1365 	error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
1366 	return (error);
1367 }
1368 
1369 int
1370 vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
1371 {
1372 	struct vm_rtc_data rtcdata;
1373 	int error;
1374 
1375 	bzero(&rtcdata, sizeof(struct vm_rtc_data));
1376 	rtcdata.offset = offset;
1377 	error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
1378 	if (error == 0)
1379 		*retval = rtcdata.value;
1380 	return (error);
1381 }
1382 
1383 int
1384 vm_rtc_settime(struct vmctx *ctx, time_t secs)
1385 {
1386 	struct vm_rtc_time rtctime;
1387 	int error;
1388 
1389 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1390 	rtctime.secs = secs;
1391 	error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
1392 	return (error);
1393 }
1394 
1395 int
1396 vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
1397 {
1398 	struct vm_rtc_time rtctime;
1399 	int error;
1400 
1401 	bzero(&rtctime, sizeof(struct vm_rtc_time));
1402 	error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
1403 	if (error == 0)
1404 		*secs = rtctime.secs;
1405 	return (error);
1406 }
1407 
1408 int
1409 vm_restart_instruction(void *arg, int vcpu)
1410 {
1411 	struct vmctx *ctx = arg;
1412 
1413 	return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
1414 }
1415