xref: /freebsd/lib/libthr/thread/thr_mutex.c (revision caf357a2c8218ea08dff52fa84455421f3e1f6d9)
1 /*
2  * Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by John Birrell.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD$
33  */
34 #include <stdlib.h>
35 #include <errno.h>
36 #include <string.h>
37 #include <sys/param.h>
38 #include <sys/queue.h>
39 #include <pthread.h>
40 #include "thr_private.h"
41 
42 #if defined(_PTHREADS_INVARIANTS)
43 #define _MUTEX_INIT_LINK(m) 		do {		\
44 	(m)->m_qe.tqe_prev = NULL;			\
45 	(m)->m_qe.tqe_next = NULL;			\
46 } while (0)
47 #define _MUTEX_ASSERT_IS_OWNED(m)	do {		\
48 	if ((m)->m_qe.tqe_prev == NULL)			\
49 		PANIC("mutex is not on list");		\
50 } while (0)
51 #define _MUTEX_ASSERT_NOT_OWNED(m)	do {		\
52 	if (((m)->m_qe.tqe_prev != NULL) ||		\
53 	    ((m)->m_qe.tqe_next != NULL))		\
54 		PANIC("mutex is on list");		\
55 } while (0)
56 #else
57 #define _MUTEX_INIT_LINK(m)
58 #define _MUTEX_ASSERT_IS_OWNED(m)
59 #define _MUTEX_ASSERT_NOT_OWNED(m)
60 #endif
61 
62 /*
63  * Prototypes
64  */
65 static int		get_muncontested(pthread_mutex_t, int);
66 static void		get_mcontested(pthread_mutex_t);
67 static int		mutex_lock_common(pthread_mutex_t *, int);
68 static inline int	mutex_self_trylock(pthread_mutex_t);
69 static inline int	mutex_self_lock(pthread_mutex_t);
70 static inline int	mutex_unlock_common(pthread_mutex_t *, int);
71 static void		mutex_priority_adjust(pthread_mutex_t);
72 static void		mutex_rescan_owned (pthread_t, pthread_mutex_t);
73 static inline pthread_t	mutex_queue_deq(pthread_mutex_t);
74 static inline void	mutex_queue_remove(pthread_mutex_t, pthread_t);
75 static inline void	mutex_queue_enq(pthread_mutex_t, pthread_t);
76 
77 
78 static spinlock_t static_init_lock = _SPINLOCK_INITIALIZER;
79 
80 static struct pthread_mutex_attr	static_mutex_attr =
81     PTHREAD_MUTEXATTR_STATIC_INITIALIZER;
82 static pthread_mutexattr_t		static_mattr = &static_mutex_attr;
83 
84 /* Single underscore versions provided for libc internal usage: */
85 __weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock);
86 __weak_reference(__pthread_mutex_lock, pthread_mutex_lock);
87 
88 /* No difference between libc and application usage of these: */
89 __weak_reference(_pthread_mutex_init, pthread_mutex_init);
90 __weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy);
91 __weak_reference(_pthread_mutex_unlock, pthread_mutex_unlock);
92 
93 
94 /*
95  * Reinitialize a private mutex; this is only used for internal mutexes.
96  */
97 int
98 _mutex_reinit(pthread_mutex_t * mutex)
99 {
100 	int	ret = 0;
101 
102 	if (mutex == NULL)
103 		ret = EINVAL;
104 	else if (*mutex == NULL)
105 		ret = _pthread_mutex_init(mutex, NULL);
106 	else {
107 		/*
108 		 * Initialize the mutex structure:
109 		 */
110 		(*mutex)->m_type = PTHREAD_MUTEX_DEFAULT;
111 		(*mutex)->m_protocol = PTHREAD_PRIO_NONE;
112 		TAILQ_INIT(&(*mutex)->m_queue);
113 		(*mutex)->m_owner = NULL;
114 		(*mutex)->m_data.m_count = 0;
115 		(*mutex)->m_flags |= MUTEX_FLAGS_INITED | MUTEX_FLAGS_PRIVATE;
116 		(*mutex)->m_refcount = 0;
117 		(*mutex)->m_prio = 0;
118 		(*mutex)->m_saved_prio = 0;
119 		_MUTEX_INIT_LINK(*mutex);
120 		memset(&(*mutex)->lock, 0, sizeof((*mutex)->lock));
121 	}
122 	return (ret);
123 }
124 
125 int
126 _pthread_mutex_init(pthread_mutex_t * mutex,
127 		   const pthread_mutexattr_t * mutex_attr)
128 {
129 	enum pthread_mutextype	type;
130 	int		protocol;
131 	int		ceiling;
132 	int		flags;
133 	pthread_mutex_t	pmutex;
134 	int		ret = 0;
135 
136 	if (mutex == NULL)
137 		ret = EINVAL;
138 
139 	/* Check if default mutex attributes: */
140 	if (mutex_attr == NULL || *mutex_attr == NULL) {
141 		/* Default to a (error checking) POSIX mutex: */
142 		type = PTHREAD_MUTEX_ERRORCHECK;
143 		protocol = PTHREAD_PRIO_NONE;
144 		ceiling = PTHREAD_MAX_PRIORITY;
145 		flags = 0;
146 	}
147 
148 	/* Check mutex type: */
149 	else if (((*mutex_attr)->m_type < PTHREAD_MUTEX_ERRORCHECK) ||
150 	    ((*mutex_attr)->m_type >= MUTEX_TYPE_MAX))
151 		/* Return an invalid argument error: */
152 		ret = EINVAL;
153 
154 	/* Check mutex protocol: */
155 	else if (((*mutex_attr)->m_protocol < PTHREAD_PRIO_NONE) ||
156 	    ((*mutex_attr)->m_protocol > PTHREAD_MUTEX_RECURSIVE))
157 		/* Return an invalid argument error: */
158 		ret = EINVAL;
159 
160 	else {
161 		/* Use the requested mutex type and protocol: */
162 		type = (*mutex_attr)->m_type;
163 		protocol = (*mutex_attr)->m_protocol;
164 		ceiling = (*mutex_attr)->m_ceiling;
165 		flags = (*mutex_attr)->m_flags;
166 	}
167 
168 	/* Check no errors so far: */
169 	if (ret == 0) {
170 		if ((pmutex = (pthread_mutex_t)
171 		    malloc(sizeof(struct pthread_mutex))) == NULL)
172 			ret = ENOMEM;
173 		else {
174 			/* Set the mutex flags: */
175 			pmutex->m_flags = flags;
176 
177 			/* Process according to mutex type: */
178 			switch (type) {
179 			/* case PTHREAD_MUTEX_DEFAULT: */
180 			case PTHREAD_MUTEX_ERRORCHECK:
181 			case PTHREAD_MUTEX_NORMAL:
182 				/* Nothing to do here. */
183 				break;
184 
185 			/* Single UNIX Spec 2 recursive mutex: */
186 			case PTHREAD_MUTEX_RECURSIVE:
187 				/* Reset the mutex count: */
188 				pmutex->m_data.m_count = 0;
189 				break;
190 
191 			/* Trap invalid mutex types: */
192 			default:
193 				/* Return an invalid argument error: */
194 				ret = EINVAL;
195 				break;
196 			}
197 			if (ret == 0) {
198 				/* Initialise the rest of the mutex: */
199 				TAILQ_INIT(&pmutex->m_queue);
200 				pmutex->m_flags |= MUTEX_FLAGS_INITED;
201 				pmutex->m_owner = NULL;
202 				pmutex->m_type = type;
203 				pmutex->m_protocol = protocol;
204 				pmutex->m_refcount = 0;
205 				if (protocol == PTHREAD_PRIO_PROTECT)
206 					pmutex->m_prio = ceiling;
207 				else
208 					pmutex->m_prio = 0;
209 				pmutex->m_saved_prio = 0;
210 				_MUTEX_INIT_LINK(pmutex);
211 				memset(&pmutex->lock, 0, sizeof(pmutex->lock));
212 				*mutex = pmutex;
213 			} else {
214 				free(pmutex);
215 				*mutex = NULL;
216 			}
217 		}
218 	}
219 	/* Return the completion status: */
220 	return (ret);
221 }
222 
223 int
224 _pthread_mutex_destroy(pthread_mutex_t * mutex)
225 {
226 	int	ret = 0;
227 
228 	if (mutex == NULL || *mutex == NULL)
229 		ret = EINVAL;
230 	else {
231 		/* Lock the mutex structure: */
232 		_SPINLOCK(&(*mutex)->lock);
233 
234 		/*
235 		 * Check to see if this mutex is in use:
236 		 */
237 		if (((*mutex)->m_owner != NULL) ||
238 		    (TAILQ_FIRST(&(*mutex)->m_queue) != NULL) ||
239 		    ((*mutex)->m_refcount != 0)) {
240 			ret = EBUSY;
241 
242 			/* Unlock the mutex structure: */
243 			_SPINUNLOCK(&(*mutex)->lock);
244 		}
245 		else {
246 			/*
247 			 * Free the memory allocated for the mutex
248 			 * structure:
249 			 */
250 			_MUTEX_ASSERT_NOT_OWNED(*mutex);
251 
252 			/* Unlock the mutex structure: */
253 			_SPINUNLOCK(&(*mutex)->lock);
254 
255 			free(*mutex);
256 
257 			/*
258 			 * Leave the caller's pointer NULL now that
259 			 * the mutex has been destroyed:
260 			 */
261 			*mutex = NULL;
262 		}
263 	}
264 
265 	/* Return the completion status: */
266 	return (ret);
267 }
268 
269 static int
270 init_static(pthread_mutex_t *mutex)
271 {
272 	int	ret;
273 
274 	_SPINLOCK(&static_init_lock);
275 
276 	if (*mutex == NULL)
277 		ret = _pthread_mutex_init(mutex, NULL);
278 	else
279 		ret = 0;
280 
281 	_SPINUNLOCK(&static_init_lock);
282 
283 	return (ret);
284 }
285 
286 static int
287 init_static_private(pthread_mutex_t *mutex)
288 {
289 	int	ret;
290 
291 	_SPINLOCK(&static_init_lock);
292 
293 	if (*mutex == NULL)
294 		ret = _pthread_mutex_init(mutex, &static_mattr);
295 	else
296 		ret = 0;
297 
298 	_SPINUNLOCK(&static_init_lock);
299 
300 	return (ret);
301 }
302 
303 int
304 __pthread_mutex_trylock(pthread_mutex_t *mutex)
305 {
306 	int	ret = 0;
307 
308 	if (mutex == NULL)
309 		ret = EINVAL;
310 
311 	/*
312 	 * If the mutex is statically initialized, perform the dynamic
313 	 * initialization:
314 	 */
315 	else if ((*mutex != NULL) || (ret = init_static(mutex)) == 0)
316 		ret = mutex_lock_common(mutex, 1);
317 
318 	return (ret);
319 }
320 
321 int
322 _pthread_mutex_trylock(pthread_mutex_t *mutex)
323 {
324 	int	ret = 0;
325 
326 	if (mutex == NULL)
327 		ret = EINVAL;
328 
329 	/*
330 	 * If the mutex is statically initialized, perform the dynamic
331 	 * initialization marking the mutex private (delete safe):
332 	 */
333 	else if ((*mutex != NULL) || (ret = init_static_private(mutex)) == 0)
334 		ret = mutex_lock_common(mutex, 1);
335 
336 	return (ret);
337 }
338 
339 static int
340 mutex_lock_common(pthread_mutex_t * mutex, int nonblock)
341 {
342 	int ret, error, inCancel;
343 
344 	ret = error = inCancel = 0;
345 
346 	PTHREAD_ASSERT((mutex != NULL) && (*mutex != NULL),
347 	    "Uninitialized mutex in mutex_lock_common");
348 
349 	/*
350 	 * Enter a loop waiting to become the mutex owner.  We need a
351 	 * loop in case the waiting thread is interrupted by a signal
352 	 * to execute a signal handler.  It is not (currently) possible
353 	 * to remain in the waiting queue while running a handler.
354 	 * Instead, the thread is interrupted and backed out of the
355 	 * waiting queue prior to executing the signal handler.
356 	 */
357 	do {
358 		/*
359 		 * Defer signals to protect the scheduling queues from
360 		 * access by the signal handler:
361 		 */
362 		/* _thread_kern_sig_defer(); */
363 
364 		/* Lock the mutex structure: */
365 		_SPINLOCK(&(*mutex)->lock);
366 
367 		/*
368 		 * If the mutex was statically allocated, properly
369 		 * initialize the tail queue.
370 		 */
371 		if (((*mutex)->m_flags & MUTEX_FLAGS_INITED) == 0) {
372 			TAILQ_INIT(&(*mutex)->m_queue);
373 			(*mutex)->m_flags |= MUTEX_FLAGS_INITED;
374 			_MUTEX_INIT_LINK(*mutex);
375 		}
376 
377 		/* Process according to mutex type: */
378 		switch ((*mutex)->m_protocol) {
379 		/* Default POSIX mutex: */
380 		case PTHREAD_PRIO_NONE:
381 			if ((error = get_muncontested(*mutex, nonblock)) == -1)
382 				if (nonblock) {
383 					ret = EBUSY;
384 					break;
385 				} else {
386 					get_mcontested(*mutex);
387 				}
388 			else
389 				ret = error;
390 			break;
391 
392 		/* POSIX priority inheritence mutex: */
393 		case PTHREAD_PRIO_INHERIT:
394 			if ((error = get_muncontested(*mutex, nonblock)) == 0) {
395 				/* Track number of priority mutexes owned: */
396 				curthread->priority_mutex_count++;
397 
398 				/*
399 				 * The mutex takes on attributes of the
400 				 * running thread when there are no waiters.
401 				 */
402 				(*mutex)->m_prio = curthread->active_priority;
403 				(*mutex)->m_saved_prio =
404 				    curthread->inherited_priority;
405 				curthread->inherited_priority =
406 				    (*mutex)->m_prio;
407 			} else if (error == -1) {
408 				if (nonblock) {
409 					ret = EBUSY;
410 					break;
411 				} else {
412 					get_mcontested(*mutex);
413 				}
414 
415 				if (curthread->active_priority >
416 				    (*mutex)->m_prio)
417 					/* Adjust priorities: */
418 					mutex_priority_adjust(*mutex);
419 			} else {
420 				ret = error;
421 			}
422 			break;
423 
424 		/* POSIX priority protection mutex: */
425 		case PTHREAD_PRIO_PROTECT:
426 			/* Check for a priority ceiling violation: */
427 			if (curthread->active_priority > (*mutex)->m_prio)
428 				ret = EINVAL;
429 
430 			if ((error = get_muncontested(*mutex, nonblock)) == 0) {
431 				/* Track number of priority mutexes owned: */
432 				curthread->priority_mutex_count++;
433 
434 				/*
435 				 * The running thread inherits the ceiling
436 				 * priority of the mutex and executes at that
437 				 * priority:
438 				 */
439 				curthread->active_priority = (*mutex)->m_prio;
440 				(*mutex)->m_saved_prio =
441 				    curthread->inherited_priority;
442 				curthread->inherited_priority =
443 				    (*mutex)->m_prio;
444 			} else if (error == -1) {
445 				if (nonblock) {
446 					ret = EBUSY;
447 					break;
448 				}
449 
450 				/* Clear any previous error: */
451 				curthread->error = 0;
452 
453 				get_mcontested(*mutex);
454 
455 				/*
456 				 * The threads priority may have changed while
457 				 * waiting for the mutex causing a ceiling
458 				 * violation.
459 				 */
460 				ret = curthread->error;
461 				curthread->error = 0;
462 			} else {
463 				ret = error;
464 			}
465 			break;
466 
467 		/* Trap invalid mutex types: */
468 		default:
469 			/* Return an invalid argument error: */
470 			ret = EINVAL;
471 			break;
472 		}
473 
474 		/*
475 		 * Check to see if this thread was interrupted and
476 		 * is still in the mutex queue of waiting threads:
477 		 */
478 		if (curthread->cancelflags & PTHREAD_CANCELLING) {
479 			if (!nonblock)
480 				mutex_queue_remove(*mutex, curthread);
481 			inCancel=1;
482 		}
483 
484 		/* Unlock the mutex structure: */
485 		_SPINUNLOCK(&(*mutex)->lock);
486 
487 		/*
488 		 * Undefer and handle pending signals, yielding if
489 		 * necessary:
490 		 */
491 		/* _thread_kern_sig_undefer(); */
492 		if (inCancel) {
493 			pthread_testcancel();
494 			PANIC("Canceled thread came back.\n");
495 		}
496 	} while ((*mutex)->m_owner != curthread && ret == 0);
497 
498 	/* Return the completion status: */
499 	return (ret);
500 }
501 
502 int
503 __pthread_mutex_lock(pthread_mutex_t *mutex)
504 {
505 	int	ret = 0;
506 
507 	if (_thread_initial == NULL)
508 		_thread_init();
509 
510 	if (mutex == NULL)
511 		ret = EINVAL;
512 
513 	/*
514 	 * If the mutex is statically initialized, perform the dynamic
515 	 * initialization:
516 	 */
517 	else if ((*mutex != NULL) || ((ret = init_static(mutex)) == 0))
518 		ret = mutex_lock_common(mutex, 0);
519 
520 	return (ret);
521 }
522 
523 int
524 _pthread_mutex_lock(pthread_mutex_t *mutex)
525 {
526 	int	ret = 0;
527 
528 	if (_thread_initial == NULL)
529 		_thread_init();
530 
531 	if (mutex == NULL)
532 		ret = EINVAL;
533 
534 	/*
535 	 * If the mutex is statically initialized, perform the dynamic
536 	 * initialization marking it private (delete safe):
537 	 */
538 	else if ((*mutex != NULL) || ((ret = init_static_private(mutex)) == 0))
539 		ret = mutex_lock_common(mutex, 0);
540 
541 	return (ret);
542 }
543 
544 int
545 _pthread_mutex_unlock(pthread_mutex_t * mutex)
546 {
547 	return (mutex_unlock_common(mutex, /* add reference */ 0));
548 }
549 
550 int
551 _mutex_cv_unlock(pthread_mutex_t * mutex)
552 {
553 	return (mutex_unlock_common(mutex, /* add reference */ 1));
554 }
555 
556 int
557 _mutex_cv_lock(pthread_mutex_t * mutex)
558 {
559 	int	ret;
560 	if ((ret = _pthread_mutex_lock(mutex)) == 0)
561 		(*mutex)->m_refcount--;
562 	return (ret);
563 }
564 
565 static inline int
566 mutex_self_trylock(pthread_mutex_t mutex)
567 {
568 	int	ret = 0;
569 
570 	switch (mutex->m_type) {
571 
572 	/* case PTHREAD_MUTEX_DEFAULT: */
573 	case PTHREAD_MUTEX_ERRORCHECK:
574 	case PTHREAD_MUTEX_NORMAL:
575 		/*
576 		 * POSIX specifies that mutexes should return EDEADLK if a
577 		 * recursive lock is detected.
578 		 */
579 		ret = EBUSY;
580 		break;
581 
582 	case PTHREAD_MUTEX_RECURSIVE:
583 		/* Increment the lock count: */
584 		mutex->m_data.m_count++;
585 		break;
586 
587 	default:
588 		/* Trap invalid mutex types; */
589 		ret = EINVAL;
590 	}
591 
592 	return (ret);
593 }
594 
595 static inline int
596 mutex_self_lock(pthread_mutex_t mutex)
597 {
598 	int ret = 0;
599 
600 	switch (mutex->m_type) {
601 	/* case PTHREAD_MUTEX_DEFAULT: */
602 	case PTHREAD_MUTEX_ERRORCHECK:
603 		/*
604 		 * POSIX specifies that mutexes should return EDEADLK if a
605 		 * recursive lock is detected.
606 		 */
607 		ret = EDEADLK;
608 		break;
609 
610 	case PTHREAD_MUTEX_NORMAL:
611 		/*
612 		 * What SS2 define as a 'normal' mutex.  Intentionally
613 		 * deadlock on attempts to get a lock you already own.
614 		 */
615 		/* XXX Sched lock. */
616 		PTHREAD_SET_STATE(curthread, PS_DEADLOCK);
617 		_SPINUNLOCK(&(mutex)->lock);
618 		_thread_suspend(curthread, NULL);
619 		PANIC("Shouldn't resume here?\n");
620 		break;
621 
622 	case PTHREAD_MUTEX_RECURSIVE:
623 		/* Increment the lock count: */
624 		mutex->m_data.m_count++;
625 		break;
626 
627 	default:
628 		/* Trap invalid mutex types; */
629 		ret = EINVAL;
630 	}
631 
632 	return (ret);
633 }
634 
635 static inline int
636 mutex_unlock_common(pthread_mutex_t * mutex, int add_reference)
637 {
638 	int	ret = 0;
639 
640 	if (mutex == NULL || *mutex == NULL) {
641 		ret = EINVAL;
642 	} else {
643 		/*
644 		 * Defer signals to protect the scheduling queues from
645 		 * access by the signal handler:
646 		 */
647 		/* _thread_kern_sig_defer(); */
648 
649 		/* Lock the mutex structure: */
650 		_SPINLOCK(&(*mutex)->lock);
651 
652 		/* Process according to mutex type: */
653 		switch ((*mutex)->m_protocol) {
654 		/* Default POSIX mutex: */
655 		case PTHREAD_PRIO_NONE:
656 			/*
657 			 * Check if the running thread is not the owner of the
658 			 * mutex:
659 			 */
660 			if ((*mutex)->m_owner != curthread) {
661 				/*
662 				 * Return an invalid argument error for no
663 				 * owner and a permission error otherwise:
664 				 */
665 				ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM;
666 			}
667 			else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
668 			    ((*mutex)->m_data.m_count > 0)) {
669 				/* Decrement the count: */
670 				(*mutex)->m_data.m_count--;
671 			} else {
672 				/*
673 				 * Clear the count in case this is recursive
674 				 * mutex.
675 				 */
676 				(*mutex)->m_data.m_count = 0;
677 
678 				/* Remove the mutex from the threads queue. */
679 				_MUTEX_ASSERT_IS_OWNED(*mutex);
680 				TAILQ_REMOVE(&(*mutex)->m_owner->mutexq,
681 				    (*mutex), m_qe);
682 				_MUTEX_INIT_LINK(*mutex);
683 
684 				/*
685 				 * Get the next thread from the queue of
686 				 * threads waiting on the mutex. The deq
687 				 * function will have already locked it
688 				 * for us.
689 				 */
690 				if (((*mutex)->m_owner =
691 			  	    mutex_queue_deq(*mutex)) != NULL) {
692 					/* Make the new owner runnable: */
693 					/* XXXTHR sched lock. */
694 					PTHREAD_NEW_STATE((*mutex)->m_owner,
695 					    PS_RUNNING);
696 
697 					/*
698 					 * Add the mutex to the threads list of
699 					 * owned mutexes:
700 					 */
701 					TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq,
702 					    (*mutex), m_qe);
703 
704 					/*
705 					 * The owner is no longer waiting for
706 					 * this mutex:
707 					 */
708 					(*mutex)->m_owner->data.mutex = NULL;
709 					_thread_critical_exit((*mutex)->m_owner);
710 				}
711 			}
712 			break;
713 
714 		/* POSIX priority inheritence mutex: */
715 		case PTHREAD_PRIO_INHERIT:
716 			/*
717 			 * Check if the running thread is not the owner of the
718 			 * mutex:
719 			 */
720 			if ((*mutex)->m_owner != curthread) {
721 				/*
722 				 * Return an invalid argument error for no
723 				 * owner and a permission error otherwise:
724 				 */
725 				ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM;
726 			}
727 			else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
728 			    ((*mutex)->m_data.m_count > 0)) {
729 				/* Decrement the count: */
730 				(*mutex)->m_data.m_count--;
731 			} else {
732 				/*
733 				 * Clear the count in case this is recursive
734 				 * mutex.
735 				 */
736 				(*mutex)->m_data.m_count = 0;
737 
738 				/*
739 				 * Restore the threads inherited priority and
740 				 * recompute the active priority (being careful
741 				 * not to override changes in the threads base
742 				 * priority subsequent to locking the mutex).
743 				 */
744 				curthread->inherited_priority =
745 					(*mutex)->m_saved_prio;
746 				curthread->active_priority =
747 				    MAX(curthread->inherited_priority,
748 				    curthread->base_priority);
749 
750 				/*
751 				 * This thread now owns one less priority mutex.
752 				 */
753 				curthread->priority_mutex_count--;
754 
755 				/* Remove the mutex from the threads queue. */
756 				_MUTEX_ASSERT_IS_OWNED(*mutex);
757 				TAILQ_REMOVE(&(*mutex)->m_owner->mutexq,
758 				    (*mutex), m_qe);
759 				_MUTEX_INIT_LINK(*mutex);
760 
761 				/*
762 				 * Get the next thread from the queue of threads
763 				 * waiting on the mutex. It will already be
764 				 * locked for us.
765 				 */
766 				if (((*mutex)->m_owner =
767 				    mutex_queue_deq(*mutex)) == NULL)
768 					/* This mutex has no priority. */
769 					(*mutex)->m_prio = 0;
770 				else {
771 					/*
772 					 * Track number of priority mutexes owned:
773 					 */
774 					(*mutex)->m_owner->priority_mutex_count++;
775 
776 					/*
777 					 * Add the mutex to the threads list
778 					 * of owned mutexes:
779 					 */
780 					TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq,
781 					    (*mutex), m_qe);
782 
783 					/*
784 					 * The owner is no longer waiting for
785 					 * this mutex:
786 					 */
787 					(*mutex)->m_owner->data.mutex = NULL;
788 
789 					/*
790 					 * Set the priority of the mutex.  Since
791 					 * our waiting threads are in descending
792 					 * priority order, the priority of the
793 					 * mutex becomes the active priority of
794 					 * the thread we just dequeued.
795 					 */
796 					(*mutex)->m_prio =
797 					    (*mutex)->m_owner->active_priority;
798 
799 					/*
800 					 * Save the owning threads inherited
801 					 * priority:
802 					 */
803 					(*mutex)->m_saved_prio =
804 						(*mutex)->m_owner->inherited_priority;
805 
806 					/*
807 					 * The owning threads inherited priority
808 					 * now becomes his active priority (the
809 					 * priority of the mutex).
810 					 */
811 					(*mutex)->m_owner->inherited_priority =
812 						(*mutex)->m_prio;
813 
814 					/*
815 					 * Make the new owner runnable:
816 					 */
817 					/* XXXTHR sched lock. */
818 					PTHREAD_NEW_STATE((*mutex)->m_owner,
819 					    PS_RUNNING);
820 
821 					_thread_critical_exit((*mutex)->m_owner);
822 				}
823 			}
824 			break;
825 
826 		/* POSIX priority ceiling mutex: */
827 		case PTHREAD_PRIO_PROTECT:
828 			/*
829 			 * Check if the running thread is not the owner of the
830 			 * mutex:
831 			 */
832 			if ((*mutex)->m_owner != curthread) {
833 				/*
834 				 * Return an invalid argument error for no
835 				 * owner and a permission error otherwise:
836 				 */
837 				ret = (*mutex)->m_owner == NULL ? EINVAL : EPERM;
838 			}
839 			else if (((*mutex)->m_type == PTHREAD_MUTEX_RECURSIVE) &&
840 			    ((*mutex)->m_data.m_count > 0)) {
841 				/* Decrement the count: */
842 				(*mutex)->m_data.m_count--;
843 			} else {
844 				/*
845 				 * Clear the count in case this is recursive
846 				 * mutex.
847 				 */
848 				(*mutex)->m_data.m_count = 0;
849 
850 				/*
851 				 * Restore the threads inherited priority and
852 				 * recompute the active priority (being careful
853 				 * not to override changes in the threads base
854 				 * priority subsequent to locking the mutex).
855 				 */
856 				curthread->inherited_priority =
857 					(*mutex)->m_saved_prio;
858 				curthread->active_priority =
859 				    MAX(curthread->inherited_priority,
860 				    curthread->base_priority);
861 
862 				/*
863 				 * This thread now owns one less priority mutex.
864 				 */
865 				curthread->priority_mutex_count--;
866 
867 				/* Remove the mutex from the threads queue. */
868 				_MUTEX_ASSERT_IS_OWNED(*mutex);
869 				TAILQ_REMOVE(&(*mutex)->m_owner->mutexq,
870 				    (*mutex), m_qe);
871 				_MUTEX_INIT_LINK(*mutex);
872 
873 				/*
874 				 * Enter a loop to find a waiting thread whose
875 				 * active priority will not cause a ceiling
876 				 * violation. It will already be locked for us.
877 				 */
878 				while ((((*mutex)->m_owner =
879 				    mutex_queue_deq(*mutex)) != NULL) &&
880 				    ((*mutex)->m_owner->active_priority >
881 				     (*mutex)->m_prio)) {
882 					/*
883 					 * Either the mutex ceiling priority
884 					 * been lowered and/or this threads
885 					 * priority has been raised subsequent
886 					 * to this thread being queued on the
887 					 * waiting list.
888 					 */
889 					(*mutex)->m_owner->error = EINVAL;
890 					PTHREAD_NEW_STATE((*mutex)->m_owner,
891 					    PS_RUNNING);
892 					/*
893 					 * The thread is no longer waiting for
894 					 * this mutex:
895 					 */
896 					(*mutex)->m_owner->data.mutex = NULL;
897 
898 					_thread_critical_exit((*mutex)->m_owner);
899 				}
900 
901 				/* Check for a new owner: */
902 				if ((*mutex)->m_owner != NULL) {
903 					/*
904 					 * Track number of priority mutexes owned:
905 					 */
906 					(*mutex)->m_owner->priority_mutex_count++;
907 
908 					/*
909 					 * Add the mutex to the threads list
910 					 * of owned mutexes:
911 					 */
912 					TAILQ_INSERT_TAIL(&(*mutex)->m_owner->mutexq,
913 					    (*mutex), m_qe);
914 
915 					/*
916 					 * The owner is no longer waiting for
917 					 * this mutex:
918 					 */
919 					(*mutex)->m_owner->data.mutex = NULL;
920 
921 					/*
922 					 * Save the owning threads inherited
923 					 * priority:
924 					 */
925 					(*mutex)->m_saved_prio =
926 						(*mutex)->m_owner->inherited_priority;
927 
928 					/*
929 					 * The owning thread inherits the
930 					 * ceiling priority of the mutex and
931 					 * executes at that priority:
932 					 */
933 					(*mutex)->m_owner->inherited_priority =
934 					    (*mutex)->m_prio;
935 					(*mutex)->m_owner->active_priority =
936 					    (*mutex)->m_prio;
937 
938 					/*
939 					 * Make the new owner runnable:
940 					 */
941 					/* XXXTHR sched lock. */
942 					PTHREAD_NEW_STATE((*mutex)->m_owner,
943 					    PS_RUNNING);
944 
945 					_thread_critical_exit((*mutex)->m_owner);
946 				}
947 			}
948 			break;
949 
950 		/* Trap invalid mutex types: */
951 		default:
952 			/* Return an invalid argument error: */
953 			ret = EINVAL;
954 			break;
955 		}
956 
957 		if ((ret == 0) && (add_reference != 0)) {
958 			/* Increment the reference count: */
959 			(*mutex)->m_refcount++;
960 		}
961 
962 		/* Unlock the mutex structure: */
963 		_SPINUNLOCK(&(*mutex)->lock);
964 
965 		/*
966 		 * Undefer and handle pending signals, yielding if
967 		 * necessary:
968 		 */
969 		/* _thread_kern_sig_undefer(); */
970 	}
971 
972 	/* Return the completion status: */
973 	return (ret);
974 }
975 
976 
977 /*
978  * This function is called when a change in base priority occurs for
979  * a thread that is holding or waiting for a priority protection or
980  * inheritence mutex.  A change in a threads base priority can effect
981  * changes to active priorities of other threads and to the ordering
982  * of mutex locking by waiting threads.
983  *
984  * This must be called while thread scheduling is deferred.
985  */
986 void
987 _mutex_notify_priochange(pthread_t pthread)
988 {
989 	/* Adjust the priorites of any owned priority mutexes: */
990 	if (pthread->priority_mutex_count > 0) {
991 		/*
992 		 * Rescan the mutexes owned by this thread and correct
993 		 * their priorities to account for this threads change
994 		 * in priority.  This has the side effect of changing
995 		 * the threads active priority.
996 		 */
997 		mutex_rescan_owned(pthread, /* rescan all owned */ NULL);
998 	}
999 
1000 	/*
1001 	 * If this thread is waiting on a priority inheritence mutex,
1002 	 * check for priority adjustments.  A change in priority can
1003 	 * also effect a ceiling violation(*) for a thread waiting on
1004 	 * a priority protection mutex; we don't perform the check here
1005 	 * as it is done in pthread_mutex_unlock.
1006 	 *
1007 	 * (*) It should be noted that a priority change to a thread
1008 	 *     _after_ taking and owning a priority ceiling mutex
1009 	 *     does not affect ownership of that mutex; the ceiling
1010 	 *     priority is only checked before mutex ownership occurs.
1011 	 */
1012 	if (pthread->state == PS_MUTEX_WAIT) {
1013 		/* Lock the mutex structure: */
1014 		_SPINLOCK(&pthread->data.mutex->lock);
1015 
1016 		/*
1017 		 * Check to make sure this thread is still in the same state
1018 		 * (the spinlock above can yield the CPU to another thread):
1019 		 */
1020 		if (pthread->state == PS_MUTEX_WAIT) {
1021 			/*
1022 			 * Remove and reinsert this thread into the list of
1023 			 * waiting threads to preserve decreasing priority
1024 			 * order.
1025 			 */
1026 			mutex_queue_remove(pthread->data.mutex, pthread);
1027 			mutex_queue_enq(pthread->data.mutex, pthread);
1028 
1029 			if (pthread->data.mutex->m_protocol ==
1030 			     PTHREAD_PRIO_INHERIT) {
1031 				/* Adjust priorities: */
1032 				mutex_priority_adjust(pthread->data.mutex);
1033 			}
1034 		}
1035 
1036 		/* Unlock the mutex structure: */
1037 		_SPINUNLOCK(&pthread->data.mutex->lock);
1038 	}
1039 }
1040 
1041 /*
1042  * Called when a new thread is added to the mutex waiting queue or
1043  * when a threads priority changes that is already in the mutex
1044  * waiting queue.
1045  */
1046 static void
1047 mutex_priority_adjust(pthread_mutex_t mutex)
1048 {
1049 	pthread_t	pthread_next, pthread = mutex->m_owner;
1050 	int		temp_prio;
1051 	pthread_mutex_t	m = mutex;
1052 
1053 	/*
1054 	 * Calculate the mutex priority as the maximum of the highest
1055 	 * active priority of any waiting threads and the owning threads
1056 	 * active priority(*).
1057 	 *
1058 	 * (*) Because the owning threads current active priority may
1059 	 *     reflect priority inherited from this mutex (and the mutex
1060 	 *     priority may have changed) we must recalculate the active
1061 	 *     priority based on the threads saved inherited priority
1062 	 *     and its base priority.
1063 	 */
1064 	pthread_next = TAILQ_FIRST(&m->m_queue);  /* should never be NULL */
1065 	temp_prio = MAX(pthread_next->active_priority,
1066 	    MAX(m->m_saved_prio, pthread->base_priority));
1067 
1068 	/* See if this mutex really needs adjusting: */
1069 	if (temp_prio == m->m_prio)
1070 		/* No need to propagate the priority: */
1071 		return;
1072 
1073 	/* Set new priority of the mutex: */
1074 	m->m_prio = temp_prio;
1075 
1076 	while (m != NULL) {
1077 		/*
1078 		 * Save the threads priority before rescanning the
1079 		 * owned mutexes:
1080 		 */
1081 		temp_prio = pthread->active_priority;
1082 
1083 		/*
1084 		 * Fix the priorities for all the mutexes this thread has
1085 		 * locked since taking this mutex.  This also has a
1086 		 * potential side-effect of changing the threads priority.
1087 		 */
1088 		mutex_rescan_owned(pthread, m);
1089 
1090 		/*
1091 		 * If the thread is currently waiting on a mutex, check
1092 		 * to see if the threads new priority has affected the
1093 		 * priority of the mutex.
1094 		 */
1095 		if ((temp_prio != pthread->active_priority) &&
1096 		    (pthread->state == PS_MUTEX_WAIT) &&
1097 		    (pthread->data.mutex->m_protocol == PTHREAD_PRIO_INHERIT)) {
1098 			/* Grab the mutex this thread is waiting on: */
1099 			m = pthread->data.mutex;
1100 
1101 			/*
1102 			 * The priority for this thread has changed.  Remove
1103 			 * and reinsert this thread into the list of waiting
1104 			 * threads to preserve decreasing priority order.
1105 			 */
1106 			mutex_queue_remove(m, pthread);
1107 			mutex_queue_enq(m, pthread);
1108 
1109 			/* Grab the waiting thread with highest priority: */
1110 			pthread_next = TAILQ_FIRST(&m->m_queue);
1111 
1112 			/*
1113 			 * Calculate the mutex priority as the maximum of the
1114 			 * highest active priority of any waiting threads and
1115 			 * the owning threads active priority.
1116 			 */
1117 			temp_prio = MAX(pthread_next->active_priority,
1118 			    MAX(m->m_saved_prio, m->m_owner->base_priority));
1119 
1120 			if (temp_prio != m->m_prio) {
1121 				/*
1122 				 * The priority needs to be propagated to the
1123 				 * mutex this thread is waiting on and up to
1124 				 * the owner of that mutex.
1125 				 */
1126 				m->m_prio = temp_prio;
1127 				pthread = m->m_owner;
1128 			}
1129 			else
1130 				/* We're done: */
1131 				m = NULL;
1132 
1133 		}
1134 		else
1135 			/* We're done: */
1136 			m = NULL;
1137 	}
1138 }
1139 
1140 static void
1141 mutex_rescan_owned(pthread_t pthread, pthread_mutex_t mutex)
1142 {
1143 	int		active_prio, inherited_prio;
1144 	pthread_mutex_t	m;
1145 	pthread_t	pthread_next;
1146 
1147 	/*
1148 	 * Start walking the mutexes the thread has taken since
1149 	 * taking this mutex.
1150 	 */
1151 	if (mutex == NULL) {
1152 		/*
1153 		 * A null mutex means start at the beginning of the owned
1154 		 * mutex list.
1155 		 */
1156 		m = TAILQ_FIRST(&pthread->mutexq);
1157 
1158 		/* There is no inherited priority yet. */
1159 		inherited_prio = 0;
1160 	}
1161 	else {
1162 		/*
1163 		 * The caller wants to start after a specific mutex.  It
1164 		 * is assumed that this mutex is a priority inheritence
1165 		 * mutex and that its priority has been correctly
1166 		 * calculated.
1167 		 */
1168 		m = TAILQ_NEXT(mutex, m_qe);
1169 
1170 		/* Start inheriting priority from the specified mutex. */
1171 		inherited_prio = mutex->m_prio;
1172 	}
1173 	active_prio = MAX(inherited_prio, pthread->base_priority);
1174 
1175 	while (m != NULL) {
1176 		/*
1177 		 * We only want to deal with priority inheritence
1178 		 * mutexes.  This might be optimized by only placing
1179 		 * priority inheritence mutexes into the owned mutex
1180 		 * list, but it may prove to be useful having all
1181 		 * owned mutexes in this list.  Consider a thread
1182 		 * exiting while holding mutexes...
1183 		 */
1184 		if (m->m_protocol == PTHREAD_PRIO_INHERIT) {
1185 			/*
1186 			 * Fix the owners saved (inherited) priority to
1187 			 * reflect the priority of the previous mutex.
1188 			 */
1189 			m->m_saved_prio = inherited_prio;
1190 
1191 			if ((pthread_next = TAILQ_FIRST(&m->m_queue)) != NULL)
1192 				/* Recalculate the priority of the mutex: */
1193 				m->m_prio = MAX(active_prio,
1194 				     pthread_next->active_priority);
1195 			else
1196 				m->m_prio = active_prio;
1197 
1198 			/* Recalculate new inherited and active priorities: */
1199 			inherited_prio = m->m_prio;
1200 			active_prio = MAX(m->m_prio, pthread->base_priority);
1201 		}
1202 
1203 		/* Advance to the next mutex owned by this thread: */
1204 		m = TAILQ_NEXT(m, m_qe);
1205 	}
1206 
1207 	/*
1208 	 * Fix the threads inherited priority and recalculate its
1209 	 * active priority.
1210 	 */
1211 	pthread->inherited_priority = inherited_prio;
1212 	active_prio = MAX(inherited_prio, pthread->base_priority);
1213 
1214 	if (active_prio != pthread->active_priority) {
1215 #if 0
1216 		/*
1217 		 * If this thread is in the priority queue, it must be
1218 		 * removed and reinserted for its new priority.
1219 	 	 */
1220 		if (pthread->flags & PTHREAD_FLAGS_IN_PRIOQ) {
1221 			/*
1222 			 * Remove the thread from the priority queue
1223 			 * before changing its priority:
1224 			 */
1225 			PTHREAD_PRIOQ_REMOVE(pthread);
1226 
1227 			/*
1228 			 * POSIX states that if the priority is being
1229 			 * lowered, the thread must be inserted at the
1230 			 * head of the queue for its priority if it owns
1231 			 * any priority protection or inheritence mutexes.
1232 			 */
1233 			if ((active_prio < pthread->active_priority) &&
1234 			    (pthread->priority_mutex_count > 0)) {
1235 				/* Set the new active priority. */
1236 				pthread->active_priority = active_prio;
1237 
1238 				PTHREAD_PRIOQ_INSERT_HEAD(pthread);
1239 			}
1240 			else {
1241 				/* Set the new active priority. */
1242 				pthread->active_priority = active_prio;
1243 
1244 				PTHREAD_PRIOQ_INSERT_TAIL(pthread);
1245 			}
1246 		}
1247 		else {
1248 			/* Set the new active priority. */
1249 			pthread->active_priority = active_prio;
1250 		}
1251 #endif
1252 		pthread->active_priority = active_prio;
1253 	}
1254 }
1255 
1256 void
1257 _mutex_unlock_private(pthread_t pthread)
1258 {
1259 	struct pthread_mutex	*m, *m_next;
1260 
1261 	for (m = TAILQ_FIRST(&pthread->mutexq); m != NULL; m = m_next) {
1262 		m_next = TAILQ_NEXT(m, m_qe);
1263 		if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0)
1264 			_pthread_mutex_unlock(&m);
1265 	}
1266 }
1267 
1268 void
1269 _mutex_lock_backout(pthread_t pthread)
1270 {
1271 	struct pthread_mutex	*mutex;
1272 
1273 	/*
1274 	 * Defer signals to protect the scheduling queues from
1275 	 * access by the signal handler:
1276 	 */
1277 	/* _thread_kern_sig_defer();*/
1278 
1279 	/* XXX - Necessary to obey lock order */
1280 	_SPINLOCK(&pthread->lock);
1281 	mutex = pthread->data.mutex;
1282 	_SPINUNLOCK(&pthread->lock);
1283 
1284 	_SPINLOCK(&mutex->lock);
1285 
1286 	_thread_critical_enter(pthread);
1287 	if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) {
1288 
1289 		mutex_queue_remove(mutex, pthread);
1290 
1291 		/* This thread is no longer waiting for the mutex: */
1292 		pthread->data.mutex = NULL;
1293 
1294 	}
1295 	/*
1296 	 * Undefer and handle pending signals, yielding if
1297 	 * necessary:
1298 	 */
1299 	/* _thread_kern_sig_undefer(); */
1300 
1301 	_thread_critical_exit(pthread);
1302 	_SPINUNLOCK(&mutex->lock);
1303 }
1304 
1305 /*
1306  * Dequeue a waiting thread from the head of a mutex queue in descending
1307  * priority order. This funtion will return with the thread locked.
1308  */
1309 static inline pthread_t
1310 mutex_queue_deq(pthread_mutex_t mutex)
1311 {
1312 	pthread_t pthread;
1313 
1314 	while ((pthread = TAILQ_FIRST(&mutex->m_queue)) != NULL) {
1315 		_thread_critical_enter(pthread);
1316 		TAILQ_REMOVE(&mutex->m_queue, pthread, sqe);
1317 		pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ;
1318 
1319 		/*
1320 		 * Only exit the loop if the thread hasn't been
1321 		 * cancelled.
1322 		 */
1323 		if ((pthread->cancelflags & PTHREAD_CANCELLING) == 0 &&
1324 		    pthread->state == PS_MUTEX_WAIT)
1325 			break;
1326 		else
1327 			_thread_critical_exit(pthread);
1328 	}
1329 
1330 	return (pthread);
1331 }
1332 
1333 /*
1334  * Remove a waiting thread from a mutex queue in descending priority order.
1335  */
1336 static inline void
1337 mutex_queue_remove(pthread_mutex_t mutex, pthread_t pthread)
1338 {
1339 	if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0) {
1340 		TAILQ_REMOVE(&mutex->m_queue, pthread, sqe);
1341 		pthread->flags &= ~PTHREAD_FLAGS_IN_MUTEXQ;
1342 	}
1343 }
1344 
1345 /*
1346  * Enqueue a waiting thread to a queue in descending priority order.
1347  */
1348 static inline void
1349 mutex_queue_enq(pthread_mutex_t mutex, pthread_t pthread)
1350 {
1351 	pthread_t tid = TAILQ_LAST(&mutex->m_queue, mutex_head);
1352 	char *name;
1353 
1354 	name = pthread->name ? pthread->name : "unknown";
1355 	if ((pthread->flags & PTHREAD_FLAGS_IN_CONDQ) != 0)
1356 		_thread_printf(2, "Thread (%s:%u) already on condq\n",
1357 		    pthread->name, pthread->uniqueid);
1358 	if ((pthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0)
1359 		_thread_printf(2, "Thread (%s:%u) already on mutexq\n",
1360 		    pthread->name, pthread->uniqueid);
1361 	PTHREAD_ASSERT_NOT_IN_SYNCQ(pthread);
1362 	/*
1363 	 * For the common case of all threads having equal priority,
1364 	 * we perform a quick check against the priority of the thread
1365 	 * at the tail of the queue.
1366 	 */
1367 	if ((tid == NULL) || (pthread->active_priority <= tid->active_priority))
1368 		TAILQ_INSERT_TAIL(&mutex->m_queue, pthread, sqe);
1369 	else {
1370 		tid = TAILQ_FIRST(&mutex->m_queue);
1371 		while (pthread->active_priority <= tid->active_priority)
1372 			tid = TAILQ_NEXT(tid, sqe);
1373 		TAILQ_INSERT_BEFORE(tid, pthread, sqe);
1374 	}
1375 	pthread->flags |= PTHREAD_FLAGS_IN_MUTEXQ;
1376 }
1377 
1378 /*
1379  * Returns with the lock owned and on the threads mutexq if
1380  * it is currently unowned. Returns 1, otherwise.
1381  */
1382 static int
1383 get_muncontested(pthread_mutex_t mutexp, int nonblock)
1384 {
1385 	if (mutexp->m_owner != NULL && mutexp->m_owner != curthread) {
1386 		return (-1);
1387 	} else if (mutexp->m_owner == curthread) {
1388 		if (nonblock)
1389 			return (mutex_self_trylock(mutexp));
1390 		else
1391 			return (mutex_self_lock(mutexp));
1392 	}
1393 
1394 	/*
1395 	 * The mutex belongs to this thread now. Mark it as
1396 	 * such. Add it to the list of mutexes owned by this
1397 	 * thread.
1398 	 */
1399 	mutexp->m_owner = curthread;
1400 	_MUTEX_ASSERT_NOT_OWNED(mutexp);
1401 	TAILQ_INSERT_TAIL(&curthread->mutexq, mutexp, m_qe);
1402 	return (0);
1403 }
1404 
1405 /*
1406  * Returns with the lock owned and on the thread's mutexq. If
1407  * the mutex is currently owned by another thread it will sleep
1408  * until it is available.
1409  */
1410 static void
1411 get_mcontested(pthread_mutex_t mutexp)
1412 {
1413 	_thread_critical_enter(curthread);
1414 
1415 	/*
1416 	 * Put this thread on the mutex's list of waiting threads.
1417 	 * The lock on the thread ensures atomic (as far as other
1418 	 * threads are concerned) setting of the thread state with
1419 	 * it's status on the mutex queue.
1420 	 */
1421 	do {
1422 		mutex_queue_enq(mutexp, curthread);
1423 		PTHREAD_SET_STATE(curthread, PS_MUTEX_WAIT);
1424 		curthread->data.mutex = mutexp;
1425 		_thread_critical_exit(curthread);
1426 		_SPINUNLOCK(&mutexp->lock);
1427 		_thread_suspend(curthread, NULL);
1428 
1429 		_SPINLOCK(&mutexp->lock);
1430 		_thread_critical_enter(curthread);
1431 	} while ((curthread->flags & PTHREAD_FLAGS_IN_MUTEXQ) != 0);
1432 
1433 	_thread_critical_exit(curthread);
1434 }
1435