xref: /freebsd/lib/libthr/thread/thr_mutex.c (revision 6a663207e7858a40398eb368e7739b656b1005a6)
1 /*
2  * Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
3  * Copyright (c) 2006 David Xu <davidxu@freebsd.org>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by John Birrell.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 #include "namespace.h"
37 #include <stdlib.h>
38 #include <errno.h>
39 #include <string.h>
40 #include <sys/param.h>
41 #include <sys/queue.h>
42 #include <pthread.h>
43 #include "un-namespace.h"
44 
45 #include "thr_private.h"
46 
47 #if defined(_PTHREADS_INVARIANTS)
48 #define MUTEX_INIT_LINK(m) 		do {		\
49 	(m)->m_qe.tqe_prev = NULL;			\
50 	(m)->m_qe.tqe_next = NULL;			\
51 } while (0)
52 #define MUTEX_ASSERT_IS_OWNED(m)	do {		\
53 	if ((m)->m_qe.tqe_prev == NULL)			\
54 		PANIC("mutex is not on list");		\
55 } while (0)
56 #define MUTEX_ASSERT_NOT_OWNED(m)	do {		\
57 	if (((m)->m_qe.tqe_prev != NULL) ||		\
58 	    ((m)->m_qe.tqe_next != NULL))		\
59 		PANIC("mutex is on list");		\
60 } while (0)
61 #else
62 #define MUTEX_INIT_LINK(m)
63 #define MUTEX_ASSERT_IS_OWNED(m)
64 #define MUTEX_ASSERT_NOT_OWNED(m)
65 #endif
66 
67 /*
68  * For adaptive mutexes, how many times to spin doing trylock2
69  * before entering the kernel to block
70  */
71 #define MUTEX_ADAPTIVE_SPINS	200
72 
73 /*
74  * Prototypes
75  */
76 int	__pthread_mutex_init(pthread_mutex_t *mutex,
77 		const pthread_mutexattr_t *mutex_attr);
78 int	__pthread_mutex_trylock(pthread_mutex_t *mutex);
79 int	__pthread_mutex_lock(pthread_mutex_t *mutex);
80 int	__pthread_mutex_timedlock(pthread_mutex_t *mutex,
81 		const struct timespec *abstime);
82 
83 static int	mutex_self_trylock(pthread_mutex_t);
84 static int	mutex_self_lock(pthread_mutex_t,
85 				const struct timespec *abstime);
86 static int	mutex_unlock_common(pthread_mutex_t *);
87 
88 __weak_reference(__pthread_mutex_init, pthread_mutex_init);
89 __weak_reference(__pthread_mutex_lock, pthread_mutex_lock);
90 __weak_reference(__pthread_mutex_timedlock, pthread_mutex_timedlock);
91 __weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock);
92 
93 /* Single underscore versions provided for libc internal usage: */
94 /* No difference between libc and application usage of these: */
95 __weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy);
96 __weak_reference(_pthread_mutex_unlock, pthread_mutex_unlock);
97 
98 __weak_reference(_pthread_mutex_getprioceiling, pthread_mutex_getprioceiling);
99 __weak_reference(_pthread_mutex_setprioceiling, pthread_mutex_setprioceiling);
100 
101 static int
102 mutex_init(pthread_mutex_t *mutex,
103     const pthread_mutexattr_t *mutex_attr, int private,
104     void *(calloc_cb)(size_t, size_t))
105 {
106 	const struct pthread_mutex_attr *attr;
107 	struct pthread_mutex *pmutex;
108 
109 	if (mutex_attr == NULL) {
110 		attr = &_pthread_mutexattr_default;
111 	} else {
112 		attr = *mutex_attr;
113 		if (attr->m_type < PTHREAD_MUTEX_ERRORCHECK ||
114 		    attr->m_type >= PTHREAD_MUTEX_TYPE_MAX)
115 			return (EINVAL);
116 		if (attr->m_protocol < PTHREAD_PRIO_NONE ||
117 		    attr->m_protocol > PTHREAD_PRIO_PROTECT)
118 			return (EINVAL);
119 	}
120 	if ((pmutex = (pthread_mutex_t)
121 		calloc_cb(1, sizeof(struct pthread_mutex))) == NULL)
122 		return (ENOMEM);
123 
124 	pmutex->m_type = attr->m_type;
125 	pmutex->m_owner = NULL;
126 	pmutex->m_flags = attr->m_flags | MUTEX_FLAGS_INITED;
127 	if (private)
128 		pmutex->m_flags |= MUTEX_FLAGS_PRIVATE;
129 	pmutex->m_count = 0;
130 	pmutex->m_refcount = 0;
131 	MUTEX_INIT_LINK(pmutex);
132 	switch(attr->m_protocol) {
133 	case PTHREAD_PRIO_INHERIT:
134 		pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
135 		pmutex->m_lock.m_flags = UMUTEX_PRIO_INHERIT;
136 		break;
137 	case PTHREAD_PRIO_PROTECT:
138 		pmutex->m_lock.m_owner = UMUTEX_CONTESTED;
139 		pmutex->m_lock.m_flags = UMUTEX_PRIO_PROTECT;
140 		pmutex->m_lock.m_ceilings[0] = attr->m_ceiling;
141 		break;
142 	case PTHREAD_PRIO_NONE:
143 		pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
144 		pmutex->m_lock.m_flags = 0;
145 	}
146 	*mutex = pmutex;
147 	return (0);
148 }
149 
150 static int
151 init_static(struct pthread *thread, pthread_mutex_t *mutex)
152 {
153 	int ret;
154 
155 	THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
156 
157 	if (*mutex == NULL)
158 		ret = mutex_init(mutex, NULL, 0, calloc);
159 	else
160 		ret = 0;
161 
162 	THR_LOCK_RELEASE(thread, &_mutex_static_lock);
163 
164 	return (ret);
165 }
166 
167 static int
168 init_static_private(struct pthread *thread, pthread_mutex_t *mutex)
169 {
170 	int ret;
171 
172 	THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
173 
174 	if (*mutex == NULL)
175 		ret = mutex_init(mutex, NULL, 1, calloc);
176 	else
177 		ret = 0;
178 
179 	THR_LOCK_RELEASE(thread, &_mutex_static_lock);
180 
181 	return (ret);
182 }
183 
184 static void
185 set_inherited_priority(struct pthread *curthread, struct pthread_mutex *m)
186 {
187 	struct pthread_mutex *m2;
188 
189 	m2 = TAILQ_LAST(&curthread->pp_mutexq, mutex_queue);
190 	if (m2 != NULL)
191 		m->m_lock.m_ceilings[1] = m2->m_lock.m_ceilings[0];
192 	else
193 		m->m_lock.m_ceilings[1] = -1;
194 }
195 
196 int
197 _pthread_mutex_init(pthread_mutex_t *mutex,
198     const pthread_mutexattr_t *mutex_attr)
199 {
200 	return mutex_init(mutex, mutex_attr, 1, calloc);
201 }
202 
203 int
204 __pthread_mutex_init(pthread_mutex_t *mutex,
205     const pthread_mutexattr_t *mutex_attr)
206 {
207 	return mutex_init(mutex, mutex_attr, 0, calloc);
208 }
209 
210 /* This function is used internally by malloc. */
211 int
212 _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
213     void *(calloc_cb)(size_t, size_t))
214 {
215 	static const struct pthread_mutex_attr attr = {
216 		.m_type = PTHREAD_MUTEX_NORMAL,
217 		.m_protocol = PTHREAD_PRIO_NONE,
218 		.m_ceiling = 0,
219 		.m_flags = 0
220 	};
221 	static const struct pthread_mutex_attr *pattr = &attr;
222 
223 	return mutex_init(mutex, (pthread_mutexattr_t *)&pattr, 0, calloc_cb);
224 }
225 
226 void
227 _mutex_fork(struct pthread *curthread)
228 {
229 	struct pthread_mutex *m;
230 
231 	/*
232 	 * Fix mutex ownership for child process.
233 	 * note that process shared mutex should not
234 	 * be inherited because owner is forking thread
235 	 * which is in parent process, they should be
236 	 * removed from the owned mutex list, current,
237 	 * process shared mutex is not supported, so I
238 	 * am not worried.
239 	 */
240 
241 	TAILQ_FOREACH(m, &curthread->mutexq, m_qe)
242 		m->m_lock.m_owner = TID(curthread);
243 	TAILQ_FOREACH(m, &curthread->pp_mutexq, m_qe)
244 		m->m_lock.m_owner = TID(curthread) | UMUTEX_CONTESTED;
245 }
246 
247 int
248 _pthread_mutex_destroy(pthread_mutex_t *mutex)
249 {
250 	struct pthread *curthread = _get_curthread();
251 	pthread_mutex_t m;
252 	uint32_t id;
253 	int ret = 0;
254 
255 	if (__predict_false(*mutex == NULL))
256 		ret = EINVAL;
257 	else {
258 		id = TID(curthread);
259 
260 		/*
261 		 * Try to lock the mutex structure, we only need to
262 		 * try once, if failed, the mutex is in used.
263 		 */
264 		ret = _thr_umutex_trylock(&(*mutex)->m_lock, id);
265 		if (ret)
266 			return (ret);
267 		m  = *mutex;
268 		/*
269 		 * Check mutex other fields to see if this mutex is
270 		 * in use. Mostly for prority mutex types, or there
271 		 * are condition variables referencing it.
272 		 */
273 		if (m->m_owner != NULL || m->m_refcount != 0) {
274 			if (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT)
275 				set_inherited_priority(curthread, m);
276 			_thr_umutex_unlock(&m->m_lock, id);
277 			ret = EBUSY;
278 		} else {
279 			/*
280 			 * Save a pointer to the mutex so it can be free'd
281 			 * and set the caller's pointer to NULL.
282 			 */
283 			*mutex = NULL;
284 
285 			if (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT)
286 				set_inherited_priority(curthread, m);
287 			_thr_umutex_unlock(&m->m_lock, id);
288 
289 			MUTEX_ASSERT_NOT_OWNED(m);
290 			free(m);
291 		}
292 	}
293 
294 	return (ret);
295 }
296 
297 
298 #define ENQUEUE_MUTEX(curthread, m)  					\
299 	do {								\
300 		(m)->m_owner = curthread;				\
301 		/* Add to the list of owned mutexes: */			\
302 		MUTEX_ASSERT_NOT_OWNED((m));				\
303 		if (((m)->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)	\
304 			TAILQ_INSERT_TAIL(&curthread->mutexq, (m), m_qe);\
305 		else							\
306 			TAILQ_INSERT_TAIL(&curthread->pp_mutexq, (m), m_qe);\
307 	} while (0)
308 
309 static int
310 mutex_trylock_common(struct pthread *curthread, pthread_mutex_t *mutex)
311 {
312 	struct pthread_mutex *m;
313 	uint32_t id;
314 	int ret;
315 
316 	id = TID(curthread);
317 	m = *mutex;
318 	ret = _thr_umutex_trylock(&m->m_lock, id);
319 	if (ret == 0) {
320 		ENQUEUE_MUTEX(curthread, m);
321 	} else if (m->m_owner == curthread) {
322 		ret = mutex_self_trylock(m);
323 	} /* else {} */
324 
325 	return (ret);
326 }
327 
328 int
329 __pthread_mutex_trylock(pthread_mutex_t *mutex)
330 {
331 	struct pthread *curthread = _get_curthread();
332 	int ret;
333 
334 	/*
335 	 * If the mutex is statically initialized, perform the dynamic
336 	 * initialization:
337 	 */
338 	if (__predict_false(*mutex == NULL)) {
339 		ret = init_static(curthread, mutex);
340 		if (__predict_false(ret))
341 			return (ret);
342 	}
343 	return (mutex_trylock_common(curthread, mutex));
344 }
345 
346 int
347 _pthread_mutex_trylock(pthread_mutex_t *mutex)
348 {
349 	struct pthread	*curthread = _get_curthread();
350 	int	ret;
351 
352 	/*
353 	 * If the mutex is statically initialized, perform the dynamic
354 	 * initialization marking the mutex private (delete safe):
355 	 */
356 	if (__predict_false(*mutex == NULL)) {
357 		ret = init_static_private(curthread, mutex);
358 		if (__predict_false(ret))
359 			return (ret);
360 	}
361 	return (mutex_trylock_common(curthread, mutex));
362 }
363 
364 static int
365 mutex_lock_common(struct pthread *curthread, pthread_mutex_t *mutex,
366 	const struct timespec * abstime)
367 {
368 	struct  timespec ts, ts2;
369 	struct	pthread_mutex *m;
370 	uint32_t	id;
371 	int	ret;
372 	int	count;
373 
374 	id = TID(curthread);
375 	m = *mutex;
376 	ret = _thr_umutex_trylock2(&m->m_lock, id);
377 	if (ret == 0) {
378 		ENQUEUE_MUTEX(curthread, m);
379 	} else if (m->m_owner == curthread) {
380 		ret = mutex_self_lock(m, abstime);
381 	} else {
382 		/*
383 		 * For adaptive mutexes, spin for a bit in the expectation
384 		 * that if the application requests this mutex type then
385 		 * the lock is likely to be released quickly and it is
386 		 * faster than entering the kernel
387 		 */
388 		if (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT)
389 			goto sleep_in_kernel;
390 
391 		if (!_thr_is_smp)
392 			goto yield_loop;
393 
394 		if (m->m_type == PTHREAD_MUTEX_ADAPTIVE_NP) {
395 			count = MUTEX_ADAPTIVE_SPINS;
396 
397 			while (count--) {
398 				ret = _thr_umutex_trylock2(&m->m_lock, id);
399 				if (ret == 0)
400 					break;
401 				CPU_SPINWAIT;
402 			}
403 			if (ret == 0)
404 				goto done;
405 		} else {
406 			if (_thr_spinloops != 0) {
407 				count = _thr_spinloops;
408 				while (count) {
409 					if (m->m_lock.m_owner == UMUTEX_UNOWNED) {
410 						ret = _thr_umutex_trylock2(&m->m_lock, id);
411 						if (ret == 0)
412 							goto done;
413 					}
414 					CPU_SPINWAIT;
415 					count--;
416 				}
417 			}
418 		}
419 
420 yield_loop:
421 		if (_thr_yieldloops != 0) {
422 			count = _thr_yieldloops;
423 			while (count--) {
424 				_sched_yield();
425 				ret = _thr_umutex_trylock2(&m->m_lock, id);
426 				if (ret == 0)
427 					goto done;
428 			}
429 		}
430 
431 sleep_in_kernel:
432 		if (abstime == NULL) {
433 			ret = __thr_umutex_lock(&m->m_lock);
434 		} else if (__predict_false(
435 			   abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
436 			   abstime->tv_nsec >= 1000000000)) {
437 			ret = EINVAL;
438 		} else {
439 			clock_gettime(CLOCK_REALTIME, &ts);
440 			TIMESPEC_SUB(&ts2, abstime, &ts);
441 			ret = __thr_umutex_timedlock(&m->m_lock, &ts2);
442 			/*
443 			 * Timed out wait is not restarted if
444 			 * it was interrupted, not worth to do it.
445 			 */
446 			if (ret == EINTR)
447 				ret = ETIMEDOUT;
448 		}
449 done:
450 		if (ret == 0)
451 			ENQUEUE_MUTEX(curthread, m);
452 	}
453 	return (ret);
454 }
455 
456 int
457 __pthread_mutex_lock(pthread_mutex_t *m)
458 {
459 	struct pthread *curthread;
460 	int	ret;
461 
462 	_thr_check_init();
463 
464 	curthread = _get_curthread();
465 
466 	/*
467 	 * If the mutex is statically initialized, perform the dynamic
468 	 * initialization:
469 	 */
470 	if (__predict_false(*m == NULL)) {
471 		ret = init_static(curthread, m);
472 		if (__predict_false(ret))
473 			return (ret);
474 	}
475 	return (mutex_lock_common(curthread, m, NULL));
476 }
477 
478 int
479 _pthread_mutex_lock(pthread_mutex_t *m)
480 {
481 	struct pthread *curthread;
482 	int	ret;
483 
484 	_thr_check_init();
485 
486 	curthread = _get_curthread();
487 
488 	/*
489 	 * If the mutex is statically initialized, perform the dynamic
490 	 * initialization marking it private (delete safe):
491 	 */
492 	if (__predict_false(*m == NULL)) {
493 		ret = init_static_private(curthread, m);
494 		if (__predict_false(ret))
495 			return (ret);
496 	}
497 	return (mutex_lock_common(curthread, m, NULL));
498 }
499 
500 int
501 __pthread_mutex_timedlock(pthread_mutex_t *m, const struct timespec *abstime)
502 {
503 	struct pthread *curthread;
504 	int	ret;
505 
506 	_thr_check_init();
507 
508 	curthread = _get_curthread();
509 
510 	/*
511 	 * If the mutex is statically initialized, perform the dynamic
512 	 * initialization:
513 	 */
514 	if (__predict_false(*m == NULL)) {
515 		ret = init_static(curthread, m);
516 		if (__predict_false(ret))
517 			return (ret);
518 	}
519 	return (mutex_lock_common(curthread, m, abstime));
520 }
521 
522 int
523 _pthread_mutex_timedlock(pthread_mutex_t *m, const struct timespec *abstime)
524 {
525 	struct pthread	*curthread;
526 	int	ret;
527 
528 	_thr_check_init();
529 
530 	curthread = _get_curthread();
531 
532 	/*
533 	 * If the mutex is statically initialized, perform the dynamic
534 	 * initialization marking it private (delete safe):
535 	 */
536 	if (__predict_false(*m == NULL)) {
537 		ret = init_static_private(curthread, m);
538 		if (__predict_false(ret))
539 			return (ret);
540 	}
541 	return (mutex_lock_common(curthread, m, abstime));
542 }
543 
544 int
545 _pthread_mutex_unlock(pthread_mutex_t *m)
546 {
547 	return (mutex_unlock_common(m));
548 }
549 
550 int
551 _mutex_cv_lock(pthread_mutex_t *m, int count)
552 {
553 	int	ret;
554 
555 	ret = mutex_lock_common(_get_curthread(), m, NULL);
556 	if (ret == 0) {
557 		(*m)->m_refcount--;
558 		(*m)->m_count += count;
559 	}
560 	return (ret);
561 }
562 
563 static int
564 mutex_self_trylock(pthread_mutex_t m)
565 {
566 	int	ret;
567 
568 	switch (m->m_type) {
569 	case PTHREAD_MUTEX_ERRORCHECK:
570 	case PTHREAD_MUTEX_NORMAL:
571 		ret = EBUSY;
572 		break;
573 
574 	case PTHREAD_MUTEX_RECURSIVE:
575 		/* Increment the lock count: */
576 		if (m->m_count + 1 > 0) {
577 			m->m_count++;
578 			ret = 0;
579 		} else
580 			ret = EAGAIN;
581 		break;
582 
583 	default:
584 		/* Trap invalid mutex types; */
585 		ret = EINVAL;
586 	}
587 
588 	return (ret);
589 }
590 
591 static int
592 mutex_self_lock(pthread_mutex_t m, const struct timespec *abstime)
593 {
594 	struct timespec	ts1, ts2;
595 	int	ret;
596 
597 	switch (m->m_type) {
598 	case PTHREAD_MUTEX_ERRORCHECK:
599 	case PTHREAD_MUTEX_ADAPTIVE_NP:
600 		if (abstime) {
601 			clock_gettime(CLOCK_REALTIME, &ts1);
602 			TIMESPEC_SUB(&ts2, abstime, &ts1);
603 			__sys_nanosleep(&ts2, NULL);
604 			ret = ETIMEDOUT;
605 		} else {
606 			/*
607 			 * POSIX specifies that mutexes should return
608 			 * EDEADLK if a recursive lock is detected.
609 			 */
610 			ret = EDEADLK;
611 		}
612 		break;
613 
614 	case PTHREAD_MUTEX_NORMAL:
615 		/*
616 		 * What SS2 define as a 'normal' mutex.  Intentionally
617 		 * deadlock on attempts to get a lock you already own.
618 		 */
619 		ret = 0;
620 		if (abstime) {
621 			clock_gettime(CLOCK_REALTIME, &ts1);
622 			TIMESPEC_SUB(&ts2, abstime, &ts1);
623 			__sys_nanosleep(&ts2, NULL);
624 			ret = ETIMEDOUT;
625 		} else {
626 			ts1.tv_sec = 30;
627 			ts1.tv_nsec = 0;
628 			for (;;)
629 				__sys_nanosleep(&ts1, NULL);
630 		}
631 		break;
632 
633 	case PTHREAD_MUTEX_RECURSIVE:
634 		/* Increment the lock count: */
635 		if (m->m_count + 1 > 0) {
636 			m->m_count++;
637 			ret = 0;
638 		} else
639 			ret = EAGAIN;
640 		break;
641 
642 	default:
643 		/* Trap invalid mutex types; */
644 		ret = EINVAL;
645 	}
646 
647 	return (ret);
648 }
649 
650 static int
651 mutex_unlock_common(pthread_mutex_t *mutex)
652 {
653 	struct pthread *curthread = _get_curthread();
654 	struct pthread_mutex *m;
655 	uint32_t id;
656 
657 	if (__predict_false((m = *mutex) == NULL))
658 		return (EINVAL);
659 
660 	/*
661 	 * Check if the running thread is not the owner of the mutex.
662 	 */
663 	if (__predict_false(m->m_owner != curthread))
664 		return (EPERM);
665 
666 	id = TID(curthread);
667 	if (__predict_false(
668 		m->m_type == PTHREAD_MUTEX_RECURSIVE &&
669 		m->m_count > 0)) {
670 		m->m_count--;
671 	} else {
672 		m->m_owner = NULL;
673 		/* Remove the mutex from the threads queue. */
674 		MUTEX_ASSERT_IS_OWNED(m);
675 		if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
676 			TAILQ_REMOVE(&curthread->mutexq, m, m_qe);
677 		else {
678 			TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
679 			set_inherited_priority(curthread, m);
680 		}
681 		MUTEX_INIT_LINK(m);
682 		_thr_umutex_unlock(&m->m_lock, id);
683 	}
684 	return (0);
685 }
686 
687 int
688 _mutex_cv_unlock(pthread_mutex_t *mutex, int *count)
689 {
690 	struct pthread *curthread = _get_curthread();
691 	struct pthread_mutex *m;
692 
693 	if (__predict_false((m = *mutex) == NULL))
694 		return (EINVAL);
695 
696 	/*
697 	 * Check if the running thread is not the owner of the mutex.
698 	 */
699 	if (__predict_false(m->m_owner != curthread))
700 		return (EPERM);
701 
702 	/*
703 	 * Clear the count in case this is a recursive mutex.
704 	 */
705 	*count = m->m_count;
706 	m->m_refcount++;
707 	m->m_count = 0;
708 	m->m_owner = NULL;
709 	/* Remove the mutex from the threads queue. */
710 	MUTEX_ASSERT_IS_OWNED(m);
711 	if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
712 		TAILQ_REMOVE(&curthread->mutexq, m, m_qe);
713 	else {
714 		TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
715 		set_inherited_priority(curthread, m);
716 	}
717 	MUTEX_INIT_LINK(m);
718 	_thr_umutex_unlock(&m->m_lock, TID(curthread));
719 	return (0);
720 }
721 
722 void
723 _mutex_unlock_private(pthread_t pthread)
724 {
725 	struct pthread_mutex	*m, *m_next;
726 
727 	TAILQ_FOREACH_SAFE(m, &pthread->mutexq, m_qe, m_next) {
728 		if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0)
729 			_pthread_mutex_unlock(&m);
730 	}
731 }
732 
733 int
734 _pthread_mutex_getprioceiling(pthread_mutex_t *mutex,
735 			      int *prioceiling)
736 {
737 	int ret;
738 
739 	if (*mutex == NULL)
740 		ret = EINVAL;
741 	else if (((*mutex)->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
742 		ret = EINVAL;
743 	else {
744 		*prioceiling = (*mutex)->m_lock.m_ceilings[0];
745 		ret = 0;
746 	}
747 
748 	return(ret);
749 }
750 
751 int
752 _pthread_mutex_setprioceiling(pthread_mutex_t *mutex,
753 			      int ceiling, int *old_ceiling)
754 {
755 	struct pthread *curthread = _get_curthread();
756 	struct pthread_mutex *m, *m1, *m2;
757 	int ret;
758 
759 	m = *mutex;
760 	if (m == NULL || (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
761 		return (EINVAL);
762 
763 	ret = __thr_umutex_set_ceiling(&m->m_lock, ceiling, old_ceiling);
764 	if (ret != 0)
765 		return (ret);
766 
767 	if (m->m_owner == curthread) {
768 		MUTEX_ASSERT_IS_OWNED(m);
769 		m1 = TAILQ_PREV(m, mutex_queue, m_qe);
770 		m2 = TAILQ_NEXT(m, m_qe);
771 		if ((m1 != NULL && m1->m_lock.m_ceilings[0] > (u_int)ceiling) ||
772 		    (m2 != NULL && m2->m_lock.m_ceilings[0] < (u_int)ceiling)) {
773 			TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
774 			TAILQ_FOREACH(m2, &curthread->pp_mutexq, m_qe) {
775 				if (m2->m_lock.m_ceilings[0] > (u_int)ceiling) {
776 					TAILQ_INSERT_BEFORE(m2, m, m_qe);
777 					return (0);
778 				}
779 			}
780 			TAILQ_INSERT_TAIL(&curthread->pp_mutexq, m, m_qe);
781 		}
782 	}
783 	return (0);
784 }
785