xref: /freebsd/lib/libthr/thread/thr_mutex.c (revision 56b45d9067e22d0ac0e971dc3af57097c60bc04c)
1 /*
2  * Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
3  * Copyright (c) 2006 David Xu <davidxu@freebsd.org>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by John Birrell.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 #include "namespace.h"
37 #include <stdlib.h>
38 #include <errno.h>
39 #include <string.h>
40 #include <sys/param.h>
41 #include <sys/queue.h>
42 #include <pthread.h>
43 #include "un-namespace.h"
44 
45 #include "thr_private.h"
46 
47 #if defined(_PTHREADS_INVARIANTS)
48 #define MUTEX_INIT_LINK(m) 		do {		\
49 	(m)->m_qe.tqe_prev = NULL;			\
50 	(m)->m_qe.tqe_next = NULL;			\
51 } while (0)
52 #define MUTEX_ASSERT_IS_OWNED(m)	do {		\
53 	if ((m)->m_qe.tqe_prev == NULL)			\
54 		PANIC("mutex is not on list");		\
55 } while (0)
56 #define MUTEX_ASSERT_NOT_OWNED(m)	do {		\
57 	if (((m)->m_qe.tqe_prev != NULL) ||		\
58 	    ((m)->m_qe.tqe_next != NULL))		\
59 		PANIC("mutex is on list");		\
60 } while (0)
61 #else
62 #define MUTEX_INIT_LINK(m)
63 #define MUTEX_ASSERT_IS_OWNED(m)
64 #define MUTEX_ASSERT_NOT_OWNED(m)
65 #endif
66 
67 /*
68  * For adaptive mutexes, how many times to spin doing trylock2
69  * before entering the kernel to block
70  */
71 #define MUTEX_ADAPTIVE_SPINS	200
72 
73 /*
74  * Prototypes
75  */
76 int	__pthread_mutex_init(pthread_mutex_t *mutex,
77 		const pthread_mutexattr_t *mutex_attr);
78 int	__pthread_mutex_trylock(pthread_mutex_t *mutex);
79 int	__pthread_mutex_lock(pthread_mutex_t *mutex);
80 int	__pthread_mutex_timedlock(pthread_mutex_t *mutex,
81 		const struct timespec *abstime);
82 
83 static int	mutex_self_trylock(pthread_mutex_t);
84 static int	mutex_self_lock(pthread_mutex_t,
85 				const struct timespec *abstime);
86 static int	mutex_unlock_common(pthread_mutex_t *);
87 
88 __weak_reference(__pthread_mutex_init, pthread_mutex_init);
89 __weak_reference(__pthread_mutex_lock, pthread_mutex_lock);
90 __weak_reference(__pthread_mutex_timedlock, pthread_mutex_timedlock);
91 __weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock);
92 
93 /* Single underscore versions provided for libc internal usage: */
94 /* No difference between libc and application usage of these: */
95 __weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy);
96 __weak_reference(_pthread_mutex_unlock, pthread_mutex_unlock);
97 
98 __weak_reference(_pthread_mutex_getprioceiling, pthread_mutex_getprioceiling);
99 __weak_reference(_pthread_mutex_setprioceiling, pthread_mutex_setprioceiling);
100 
101 static int
102 mutex_init(pthread_mutex_t *mutex,
103     const pthread_mutexattr_t *mutex_attr, int private)
104 {
105 	const struct pthread_mutex_attr *attr;
106 	struct pthread_mutex *pmutex;
107 
108 	if (mutex_attr == NULL) {
109 		attr = &_pthread_mutexattr_default;
110 	} else {
111 		attr = *mutex_attr;
112 		if (attr->m_type < PTHREAD_MUTEX_ERRORCHECK ||
113 		    attr->m_type >= PTHREAD_MUTEX_TYPE_MAX)
114 			return (EINVAL);
115 		if (attr->m_protocol < PTHREAD_PRIO_NONE ||
116 		    attr->m_protocol > PTHREAD_PRIO_PROTECT)
117 			return (EINVAL);
118 	}
119 	if ((pmutex = (pthread_mutex_t)
120 		calloc(1, sizeof(struct pthread_mutex))) == NULL)
121 		return (ENOMEM);
122 
123 	pmutex->m_type = attr->m_type;
124 	pmutex->m_owner = NULL;
125 	pmutex->m_flags = attr->m_flags | MUTEX_FLAGS_INITED;
126 	if (private)
127 		pmutex->m_flags |= MUTEX_FLAGS_PRIVATE;
128 	pmutex->m_count = 0;
129 	pmutex->m_refcount = 0;
130 	MUTEX_INIT_LINK(pmutex);
131 	switch(attr->m_protocol) {
132 	case PTHREAD_PRIO_INHERIT:
133 		pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
134 		pmutex->m_lock.m_flags = UMUTEX_PRIO_INHERIT;
135 		break;
136 	case PTHREAD_PRIO_PROTECT:
137 		pmutex->m_lock.m_owner = UMUTEX_CONTESTED;
138 		pmutex->m_lock.m_flags = UMUTEX_PRIO_PROTECT;
139 		pmutex->m_lock.m_ceilings[0] = attr->m_ceiling;
140 		break;
141 	case PTHREAD_PRIO_NONE:
142 		pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
143 		pmutex->m_lock.m_flags = 0;
144 	}
145 	*mutex = pmutex;
146 	return (0);
147 }
148 
149 static int
150 init_static(struct pthread *thread, pthread_mutex_t *mutex)
151 {
152 	int ret;
153 
154 	THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
155 
156 	if (*mutex == NULL)
157 		ret = mutex_init(mutex, NULL, 0);
158 	else
159 		ret = 0;
160 
161 	THR_LOCK_RELEASE(thread, &_mutex_static_lock);
162 
163 	return (ret);
164 }
165 
166 static int
167 init_static_private(struct pthread *thread, pthread_mutex_t *mutex)
168 {
169 	int ret;
170 
171 	THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
172 
173 	if (*mutex == NULL)
174 		ret = mutex_init(mutex, NULL, 1);
175 	else
176 		ret = 0;
177 
178 	THR_LOCK_RELEASE(thread, &_mutex_static_lock);
179 
180 	return (ret);
181 }
182 
183 static void
184 set_inherited_priority(struct pthread *curthread, struct pthread_mutex *m)
185 {
186 	struct pthread_mutex *m2;
187 
188 	m2 = TAILQ_LAST(&curthread->pp_mutexq, mutex_queue);
189 	if (m2 != NULL)
190 		m->m_lock.m_ceilings[1] = m2->m_lock.m_ceilings[0];
191 	else
192 		m->m_lock.m_ceilings[1] = -1;
193 }
194 
195 int
196 _pthread_mutex_init(pthread_mutex_t *mutex,
197     const pthread_mutexattr_t *mutex_attr)
198 {
199 	return mutex_init(mutex, mutex_attr, 1);
200 }
201 
202 int
203 __pthread_mutex_init(pthread_mutex_t *mutex,
204     const pthread_mutexattr_t *mutex_attr)
205 {
206 	return mutex_init(mutex, mutex_attr, 0);
207 }
208 
209 void
210 _mutex_fork(struct pthread *curthread)
211 {
212 	struct pthread_mutex *m;
213 
214 	/*
215 	 * Fix mutex ownership for child process.
216 	 * note that process shared mutex should not
217 	 * be inherited because owner is forking thread
218 	 * which is in parent process, they should be
219 	 * removed from the owned mutex list, current,
220 	 * process shared mutex is not supported, so I
221 	 * am not worried.
222 	 */
223 
224 	TAILQ_FOREACH(m, &curthread->mutexq, m_qe)
225 		m->m_lock.m_owner = TID(curthread);
226 	TAILQ_FOREACH(m, &curthread->pp_mutexq, m_qe)
227 		m->m_lock.m_owner = TID(curthread) | UMUTEX_CONTESTED;
228 }
229 
230 int
231 _pthread_mutex_destroy(pthread_mutex_t *mutex)
232 {
233 	struct pthread *curthread = _get_curthread();
234 	pthread_mutex_t m;
235 	uint32_t id;
236 	int ret = 0;
237 
238 	if (__predict_false(*mutex == NULL))
239 		ret = EINVAL;
240 	else {
241 		id = TID(curthread);
242 
243 		/*
244 		 * Try to lock the mutex structure, we only need to
245 		 * try once, if failed, the mutex is in used.
246 		 */
247 		ret = _thr_umutex_trylock(&(*mutex)->m_lock, id);
248 		if (ret)
249 			return (ret);
250 		m  = *mutex;
251 		/*
252 		 * Check mutex other fields to see if this mutex is
253 		 * in use. Mostly for prority mutex types, or there
254 		 * are condition variables referencing it.
255 		 */
256 		if (m->m_owner != NULL || m->m_refcount != 0) {
257 			if (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT)
258 				set_inherited_priority(curthread, m);
259 			_thr_umutex_unlock(&m->m_lock, id);
260 			ret = EBUSY;
261 		} else {
262 			/*
263 			 * Save a pointer to the mutex so it can be free'd
264 			 * and set the caller's pointer to NULL.
265 			 */
266 			*mutex = NULL;
267 
268 			if (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT)
269 				set_inherited_priority(curthread, m);
270 			_thr_umutex_unlock(&m->m_lock, id);
271 
272 			MUTEX_ASSERT_NOT_OWNED(m);
273 			free(m);
274 		}
275 	}
276 
277 	return (ret);
278 }
279 
280 
281 #define ENQUEUE_MUTEX(curthread, m)  					\
282 		m->m_owner = curthread;					\
283 		/* Add to the list of owned mutexes: */			\
284 		MUTEX_ASSERT_NOT_OWNED(m);				\
285 		if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)	\
286 			TAILQ_INSERT_TAIL(&curthread->mutexq, m, m_qe);	\
287 		else							\
288 			TAILQ_INSERT_TAIL(&curthread->pp_mutexq, m, m_qe)
289 
290 static int
291 mutex_trylock_common(struct pthread *curthread, pthread_mutex_t *mutex)
292 {
293 	struct pthread_mutex *m;
294 	uint32_t id;
295 	int ret;
296 
297 	id = TID(curthread);
298 	m = *mutex;
299 	ret = _thr_umutex_trylock(&m->m_lock, id);
300 	if (ret == 0) {
301 		ENQUEUE_MUTEX(curthread, m);
302 	} else if (m->m_owner == curthread) {
303 		ret = mutex_self_trylock(m);
304 	} /* else {} */
305 
306 	return (ret);
307 }
308 
309 int
310 __pthread_mutex_trylock(pthread_mutex_t *mutex)
311 {
312 	struct pthread *curthread = _get_curthread();
313 	int ret;
314 
315 	/*
316 	 * If the mutex is statically initialized, perform the dynamic
317 	 * initialization:
318 	 */
319 	if (__predict_false(*mutex == NULL)) {
320 		ret = init_static(curthread, mutex);
321 		if (__predict_false(ret))
322 			return (ret);
323 	}
324 	return (mutex_trylock_common(curthread, mutex));
325 }
326 
327 int
328 _pthread_mutex_trylock(pthread_mutex_t *mutex)
329 {
330 	struct pthread	*curthread = _get_curthread();
331 	int	ret;
332 
333 	/*
334 	 * If the mutex is statically initialized, perform the dynamic
335 	 * initialization marking the mutex private (delete safe):
336 	 */
337 	if (__predict_false(*mutex == NULL)) {
338 		ret = init_static_private(curthread, mutex);
339 		if (__predict_false(ret))
340 			return (ret);
341 	}
342 	return (mutex_trylock_common(curthread, mutex));
343 }
344 
345 static int
346 mutex_lock_common(struct pthread *curthread, pthread_mutex_t *mutex,
347 	const struct timespec * abstime)
348 {
349 	struct  timespec ts, ts2;
350 	struct	pthread_mutex *m;
351 	uint32_t	id;
352 	int	ret;
353 	int	count;
354 
355 	id = TID(curthread);
356 	m = *mutex;
357 	ret = _thr_umutex_trylock2(&m->m_lock, id);
358 	if (ret == 0) {
359 		ENQUEUE_MUTEX(curthread, m);
360 	} else if (m->m_owner == curthread) {
361 		ret = mutex_self_lock(m, abstime);
362 	} else {
363 		/*
364 		 * For adaptive mutexes, spin for a bit in the expectation
365 		 * that if the application requests this mutex type then
366 		 * the lock is likely to be released quickly and it is
367 		 * faster than entering the kernel
368 		 */
369 		if (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT)
370 			goto sleep_in_kernel;
371 
372 		if (!_thr_is_smp)
373 			goto yield_loop;
374 
375 		if (m->m_type == PTHREAD_MUTEX_ADAPTIVE_NP) {
376 			count = MUTEX_ADAPTIVE_SPINS;
377 
378 			while (count--) {
379 				ret = _thr_umutex_trylock2(&m->m_lock, id);
380 				if (ret == 0)
381 					break;
382 				CPU_SPINWAIT;
383 			}
384 			if (ret == 0)
385 				goto done;
386 		} else {
387 			if (_thr_spinloops != 0) {
388 				count = _thr_spinloops;
389 				while (count) {
390 					if (m->m_lock.m_owner == UMUTEX_UNOWNED) {
391 						ret = _thr_umutex_trylock2(&m->m_lock, id);
392 						if (ret == 0)
393 							goto done;
394 					}
395 					CPU_SPINWAIT;
396 					count--;
397 				}
398 			}
399 		}
400 
401 yield_loop:
402 		if (_thr_yieldloops != 0) {
403 			count = _thr_yieldloops;
404 			while (count--) {
405 				_sched_yield();
406 				ret = _thr_umutex_trylock2(&m->m_lock, id);
407 				if (ret == 0)
408 					goto done;
409 			}
410 		}
411 
412 sleep_in_kernel:
413 		if (abstime == NULL) {
414 			ret = __thr_umutex_lock(&m->m_lock);
415 		} else if (__predict_false(
416 			   abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
417 			   abstime->tv_nsec >= 1000000000)) {
418 			ret = EINVAL;
419 		} else {
420 			clock_gettime(CLOCK_REALTIME, &ts);
421 			TIMESPEC_SUB(&ts2, abstime, &ts);
422 			ret = __thr_umutex_timedlock(&m->m_lock, &ts2);
423 			/*
424 			 * Timed out wait is not restarted if
425 			 * it was interrupted, not worth to do it.
426 			 */
427 			if (ret == EINTR)
428 				ret = ETIMEDOUT;
429 		}
430 done:
431 		if (ret == 0)
432 			ENQUEUE_MUTEX(curthread, m);
433 	}
434 	return (ret);
435 }
436 
437 int
438 __pthread_mutex_lock(pthread_mutex_t *m)
439 {
440 	struct pthread *curthread;
441 	int	ret;
442 
443 	_thr_check_init();
444 
445 	curthread = _get_curthread();
446 
447 	/*
448 	 * If the mutex is statically initialized, perform the dynamic
449 	 * initialization:
450 	 */
451 	if (__predict_false(*m == NULL)) {
452 		ret = init_static(curthread, m);
453 		if (__predict_false(ret))
454 			return (ret);
455 	}
456 	return (mutex_lock_common(curthread, m, NULL));
457 }
458 
459 int
460 _pthread_mutex_lock(pthread_mutex_t *m)
461 {
462 	struct pthread *curthread;
463 	int	ret;
464 
465 	_thr_check_init();
466 
467 	curthread = _get_curthread();
468 
469 	/*
470 	 * If the mutex is statically initialized, perform the dynamic
471 	 * initialization marking it private (delete safe):
472 	 */
473 	if (__predict_false(*m == NULL)) {
474 		ret = init_static_private(curthread, m);
475 		if (__predict_false(ret))
476 			return (ret);
477 	}
478 	return (mutex_lock_common(curthread, m, NULL));
479 }
480 
481 int
482 __pthread_mutex_timedlock(pthread_mutex_t *m, const struct timespec *abstime)
483 {
484 	struct pthread *curthread;
485 	int	ret;
486 
487 	_thr_check_init();
488 
489 	curthread = _get_curthread();
490 
491 	/*
492 	 * If the mutex is statically initialized, perform the dynamic
493 	 * initialization:
494 	 */
495 	if (__predict_false(*m == NULL)) {
496 		ret = init_static(curthread, m);
497 		if (__predict_false(ret))
498 			return (ret);
499 	}
500 	return (mutex_lock_common(curthread, m, abstime));
501 }
502 
503 int
504 _pthread_mutex_timedlock(pthread_mutex_t *m, const struct timespec *abstime)
505 {
506 	struct pthread	*curthread;
507 	int	ret;
508 
509 	_thr_check_init();
510 
511 	curthread = _get_curthread();
512 
513 	/*
514 	 * If the mutex is statically initialized, perform the dynamic
515 	 * initialization marking it private (delete safe):
516 	 */
517 	if (__predict_false(*m == NULL)) {
518 		ret = init_static_private(curthread, m);
519 		if (__predict_false(ret))
520 			return (ret);
521 	}
522 	return (mutex_lock_common(curthread, m, abstime));
523 }
524 
525 int
526 _pthread_mutex_unlock(pthread_mutex_t *m)
527 {
528 	return (mutex_unlock_common(m));
529 }
530 
531 int
532 _mutex_cv_lock(pthread_mutex_t *m, int count)
533 {
534 	int	ret;
535 
536 	ret = mutex_lock_common(_get_curthread(), m, NULL);
537 	if (ret == 0) {
538 		(*m)->m_refcount--;
539 		(*m)->m_count += count;
540 	}
541 	return (ret);
542 }
543 
544 static int
545 mutex_self_trylock(pthread_mutex_t m)
546 {
547 	int	ret;
548 
549 	switch (m->m_type) {
550 	case PTHREAD_MUTEX_ERRORCHECK:
551 	case PTHREAD_MUTEX_NORMAL:
552 		ret = EBUSY;
553 		break;
554 
555 	case PTHREAD_MUTEX_RECURSIVE:
556 		/* Increment the lock count: */
557 		if (m->m_count + 1 > 0) {
558 			m->m_count++;
559 			ret = 0;
560 		} else
561 			ret = EAGAIN;
562 		break;
563 
564 	default:
565 		/* Trap invalid mutex types; */
566 		ret = EINVAL;
567 	}
568 
569 	return (ret);
570 }
571 
572 static int
573 mutex_self_lock(pthread_mutex_t m, const struct timespec *abstime)
574 {
575 	struct timespec	ts1, ts2;
576 	int	ret;
577 
578 	switch (m->m_type) {
579 	case PTHREAD_MUTEX_ERRORCHECK:
580 	case PTHREAD_MUTEX_ADAPTIVE_NP:
581 		if (abstime) {
582 			clock_gettime(CLOCK_REALTIME, &ts1);
583 			TIMESPEC_SUB(&ts2, abstime, &ts1);
584 			__sys_nanosleep(&ts2, NULL);
585 			ret = ETIMEDOUT;
586 		} else {
587 			/*
588 			 * POSIX specifies that mutexes should return
589 			 * EDEADLK if a recursive lock is detected.
590 			 */
591 			ret = EDEADLK;
592 		}
593 		break;
594 
595 	case PTHREAD_MUTEX_NORMAL:
596 		/*
597 		 * What SS2 define as a 'normal' mutex.  Intentionally
598 		 * deadlock on attempts to get a lock you already own.
599 		 */
600 		ret = 0;
601 		if (abstime) {
602 			clock_gettime(CLOCK_REALTIME, &ts1);
603 			TIMESPEC_SUB(&ts2, abstime, &ts1);
604 			__sys_nanosleep(&ts2, NULL);
605 			ret = ETIMEDOUT;
606 		} else {
607 			ts1.tv_sec = 30;
608 			ts1.tv_nsec = 0;
609 			for (;;)
610 				__sys_nanosleep(&ts1, NULL);
611 		}
612 		break;
613 
614 	case PTHREAD_MUTEX_RECURSIVE:
615 		/* Increment the lock count: */
616 		if (m->m_count + 1 > 0) {
617 			m->m_count++;
618 			ret = 0;
619 		} else
620 			ret = EAGAIN;
621 		break;
622 
623 	default:
624 		/* Trap invalid mutex types; */
625 		ret = EINVAL;
626 	}
627 
628 	return (ret);
629 }
630 
631 static int
632 mutex_unlock_common(pthread_mutex_t *mutex)
633 {
634 	struct pthread *curthread = _get_curthread();
635 	struct pthread_mutex *m;
636 	uint32_t id;
637 
638 	if (__predict_false((m = *mutex) == NULL))
639 		return (EINVAL);
640 
641 	/*
642 	 * Check if the running thread is not the owner of the mutex.
643 	 */
644 	if (__predict_false(m->m_owner != curthread))
645 		return (EPERM);
646 
647 	id = TID(curthread);
648 	if (__predict_false(
649 		m->m_type == PTHREAD_MUTEX_RECURSIVE &&
650 		m->m_count > 0)) {
651 		m->m_count--;
652 	} else {
653 		m->m_owner = NULL;
654 		/* Remove the mutex from the threads queue. */
655 		MUTEX_ASSERT_IS_OWNED(m);
656 		if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
657 			TAILQ_REMOVE(&curthread->mutexq, m, m_qe);
658 		else {
659 			TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
660 			set_inherited_priority(curthread, m);
661 		}
662 		MUTEX_INIT_LINK(m);
663 		_thr_umutex_unlock(&m->m_lock, id);
664 	}
665 	return (0);
666 }
667 
668 int
669 _mutex_cv_unlock(pthread_mutex_t *mutex, int *count)
670 {
671 	struct pthread *curthread = _get_curthread();
672 	struct pthread_mutex *m;
673 
674 	if (__predict_false((m = *mutex) == NULL))
675 		return (EINVAL);
676 
677 	/*
678 	 * Check if the running thread is not the owner of the mutex.
679 	 */
680 	if (__predict_false(m->m_owner != curthread))
681 		return (EPERM);
682 
683 	/*
684 	 * Clear the count in case this is a recursive mutex.
685 	 */
686 	*count = m->m_count;
687 	m->m_refcount++;
688 	m->m_count = 0;
689 	m->m_owner = NULL;
690 	/* Remove the mutex from the threads queue. */
691 	MUTEX_ASSERT_IS_OWNED(m);
692 	if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
693 		TAILQ_REMOVE(&curthread->mutexq, m, m_qe);
694 	else {
695 		TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
696 		set_inherited_priority(curthread, m);
697 	}
698 	MUTEX_INIT_LINK(m);
699 	_thr_umutex_unlock(&m->m_lock, TID(curthread));
700 	return (0);
701 }
702 
703 void
704 _mutex_unlock_private(pthread_t pthread)
705 {
706 	struct pthread_mutex	*m, *m_next;
707 
708 	TAILQ_FOREACH_SAFE(m, &pthread->mutexq, m_qe, m_next) {
709 		if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0)
710 			_pthread_mutex_unlock(&m);
711 	}
712 }
713 
714 int
715 _pthread_mutex_getprioceiling(pthread_mutex_t *mutex,
716 			      int *prioceiling)
717 {
718 	int ret;
719 
720 	if (*mutex == NULL)
721 		ret = EINVAL;
722 	else if (((*mutex)->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
723 		ret = EINVAL;
724 	else {
725 		*prioceiling = (*mutex)->m_lock.m_ceilings[0];
726 		ret = 0;
727 	}
728 
729 	return(ret);
730 }
731 
732 int
733 _pthread_mutex_setprioceiling(pthread_mutex_t *mutex,
734 			      int ceiling, int *old_ceiling)
735 {
736 	struct pthread *curthread = _get_curthread();
737 	struct pthread_mutex *m, *m1, *m2;
738 	int ret;
739 
740 	m = *mutex;
741 	if (m == NULL || (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
742 		return (EINVAL);
743 
744 	ret = __thr_umutex_set_ceiling(&m->m_lock, ceiling, old_ceiling);
745 	if (ret != 0)
746 		return (ret);
747 
748 	if (m->m_owner == curthread) {
749 		MUTEX_ASSERT_IS_OWNED(m);
750 		m1 = TAILQ_PREV(m, mutex_queue, m_qe);
751 		m2 = TAILQ_NEXT(m, m_qe);
752 		if ((m1 != NULL && m1->m_lock.m_ceilings[0] > ceiling) ||
753 		    (m2 != NULL && m2->m_lock.m_ceilings[0] < ceiling)) {
754 			TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
755 			TAILQ_FOREACH(m2, &curthread->pp_mutexq, m_qe) {
756 				if (m2->m_lock.m_ceilings[0] > ceiling) {
757 					TAILQ_INSERT_BEFORE(m2, m, m_qe);
758 					return (0);
759 				}
760 			}
761 			TAILQ_INSERT_TAIL(&curthread->pp_mutexq, m, m_qe);
762 		}
763 	}
764 	return (0);
765 }
766