xref: /freebsd/lib/libthr/thread/thr_mutex.c (revision 55f18e070f684a9775e78ad8e5d92e1169b61e91)
1 /*
2  * Copyright (c) 1995 John Birrell <jb@cimlogic.com.au>.
3  * Copyright (c) 2006 David Xu <davidxu@freebsd.org>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by John Birrell.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 #include "namespace.h"
37 #include <stdlib.h>
38 #include <errno.h>
39 #include <string.h>
40 #include <sys/param.h>
41 #include <sys/queue.h>
42 #include <pthread.h>
43 #include "un-namespace.h"
44 
45 #include "thr_private.h"
46 
47 #if defined(_PTHREADS_INVARIANTS)
48 #define MUTEX_INIT_LINK(m) 		do {		\
49 	(m)->m_qe.tqe_prev = NULL;			\
50 	(m)->m_qe.tqe_next = NULL;			\
51 } while (0)
52 #define MUTEX_ASSERT_IS_OWNED(m)	do {		\
53 	if ((m)->m_qe.tqe_prev == NULL)			\
54 		PANIC("mutex is not on list");		\
55 } while (0)
56 #define MUTEX_ASSERT_NOT_OWNED(m)	do {		\
57 	if (((m)->m_qe.tqe_prev != NULL) ||		\
58 	    ((m)->m_qe.tqe_next != NULL))		\
59 		PANIC("mutex is on list");		\
60 } while (0)
61 #else
62 #define MUTEX_INIT_LINK(m)
63 #define MUTEX_ASSERT_IS_OWNED(m)
64 #define MUTEX_ASSERT_NOT_OWNED(m)
65 #endif
66 
67 /*
68  * For adaptive mutexes, how many times to spin doing trylock2
69  * before entering the kernel to block
70  */
71 #define MUTEX_ADAPTIVE_SPINS	200
72 
73 /*
74  * Prototypes
75  */
76 int	__pthread_mutex_init(pthread_mutex_t *mutex,
77 		const pthread_mutexattr_t *mutex_attr);
78 int	__pthread_mutex_trylock(pthread_mutex_t *mutex);
79 int	__pthread_mutex_lock(pthread_mutex_t *mutex);
80 int	__pthread_mutex_timedlock(pthread_mutex_t *mutex,
81 		const struct timespec *abstime);
82 
83 static int	mutex_self_trylock(pthread_mutex_t);
84 static int	mutex_self_lock(pthread_mutex_t,
85 				const struct timespec *abstime);
86 static int	mutex_unlock_common(pthread_mutex_t *);
87 
88 __weak_reference(__pthread_mutex_init, pthread_mutex_init);
89 __weak_reference(__pthread_mutex_lock, pthread_mutex_lock);
90 __weak_reference(__pthread_mutex_timedlock, pthread_mutex_timedlock);
91 __weak_reference(__pthread_mutex_trylock, pthread_mutex_trylock);
92 
93 /* Single underscore versions provided for libc internal usage: */
94 /* No difference between libc and application usage of these: */
95 __weak_reference(_pthread_mutex_destroy, pthread_mutex_destroy);
96 __weak_reference(_pthread_mutex_unlock, pthread_mutex_unlock);
97 
98 __weak_reference(_pthread_mutex_getprioceiling, pthread_mutex_getprioceiling);
99 __weak_reference(_pthread_mutex_setprioceiling, pthread_mutex_setprioceiling);
100 
101 static int
102 mutex_init(pthread_mutex_t *mutex,
103     const pthread_mutexattr_t *mutex_attr, int private)
104 {
105 	const struct pthread_mutex_attr *attr;
106 	struct pthread_mutex *pmutex;
107 
108 	if (mutex_attr == NULL) {
109 		attr = &_pthread_mutexattr_default;
110 	} else {
111 		attr = *mutex_attr;
112 		if (attr->m_type < PTHREAD_MUTEX_ERRORCHECK ||
113 		    attr->m_type >= PTHREAD_MUTEX_TYPE_MAX)
114 			return (EINVAL);
115 		if (attr->m_protocol < PTHREAD_PRIO_NONE ||
116 		    attr->m_protocol > PTHREAD_PRIO_PROTECT)
117 			return (EINVAL);
118 	}
119 	if ((pmutex = (pthread_mutex_t)
120 		calloc(1, sizeof(struct pthread_mutex))) == NULL)
121 		return (ENOMEM);
122 
123 	pmutex->m_type = attr->m_type;
124 	pmutex->m_owner = NULL;
125 	pmutex->m_flags = attr->m_flags | MUTEX_FLAGS_INITED;
126 	if (private)
127 		pmutex->m_flags |= MUTEX_FLAGS_PRIVATE;
128 	pmutex->m_count = 0;
129 	pmutex->m_refcount = 0;
130 	MUTEX_INIT_LINK(pmutex);
131 	switch(attr->m_protocol) {
132 	case PTHREAD_PRIO_INHERIT:
133 		pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
134 		pmutex->m_lock.m_flags = UMUTEX_PRIO_INHERIT;
135 		break;
136 	case PTHREAD_PRIO_PROTECT:
137 		pmutex->m_lock.m_owner = UMUTEX_CONTESTED;
138 		pmutex->m_lock.m_flags = UMUTEX_PRIO_PROTECT;
139 		pmutex->m_lock.m_ceilings[0] = attr->m_ceiling;
140 		break;
141 	case PTHREAD_PRIO_NONE:
142 		pmutex->m_lock.m_owner = UMUTEX_UNOWNED;
143 		pmutex->m_lock.m_flags = 0;
144 	}
145 	*mutex = pmutex;
146 	return (0);
147 }
148 
149 static int
150 init_static(struct pthread *thread, pthread_mutex_t *mutex)
151 {
152 	int ret;
153 
154 	THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
155 
156 	if (*mutex == NULL)
157 		ret = mutex_init(mutex, NULL, 0);
158 	else
159 		ret = 0;
160 
161 	THR_LOCK_RELEASE(thread, &_mutex_static_lock);
162 
163 	return (ret);
164 }
165 
166 static int
167 init_static_private(struct pthread *thread, pthread_mutex_t *mutex)
168 {
169 	int ret;
170 
171 	THR_LOCK_ACQUIRE(thread, &_mutex_static_lock);
172 
173 	if (*mutex == NULL)
174 		ret = mutex_init(mutex, NULL, 1);
175 	else
176 		ret = 0;
177 
178 	THR_LOCK_RELEASE(thread, &_mutex_static_lock);
179 
180 	return (ret);
181 }
182 
183 static void
184 set_inherited_priority(struct pthread *curthread, struct pthread_mutex *m)
185 {
186 	struct pthread_mutex *m2;
187 
188 	m2 = TAILQ_LAST(&curthread->pp_mutexq, mutex_queue);
189 	if (m2 != NULL)
190 		m->m_lock.m_ceilings[1] = m2->m_lock.m_ceilings[0];
191 	else
192 		m->m_lock.m_ceilings[1] = -1;
193 }
194 
195 int
196 _pthread_mutex_init(pthread_mutex_t *mutex,
197     const pthread_mutexattr_t *mutex_attr)
198 {
199 	return mutex_init(mutex, mutex_attr, 1);
200 }
201 
202 int
203 __pthread_mutex_init(pthread_mutex_t *mutex,
204     const pthread_mutexattr_t *mutex_attr)
205 {
206 	return mutex_init(mutex, mutex_attr, 0);
207 }
208 
209 void
210 _mutex_fork(struct pthread *curthread)
211 {
212 	struct pthread_mutex *m;
213 
214 	/*
215 	 * Fix mutex ownership for child process.
216 	 * note that process shared mutex should not
217 	 * be inherited because owner is forking thread
218 	 * which is in parent process, they should be
219 	 * removed from the owned mutex list, current,
220 	 * process shared mutex is not supported, so I
221 	 * am not worried.
222 	 */
223 
224 	TAILQ_FOREACH(m, &curthread->mutexq, m_qe)
225 		m->m_lock.m_owner = TID(curthread);
226 	TAILQ_FOREACH(m, &curthread->pp_mutexq, m_qe)
227 		m->m_lock.m_owner = TID(curthread) | UMUTEX_CONTESTED;
228 }
229 
230 int
231 _pthread_mutex_destroy(pthread_mutex_t *mutex)
232 {
233 	struct pthread *curthread = _get_curthread();
234 	pthread_mutex_t m;
235 	uint32_t id;
236 	int ret = 0;
237 
238 	if (__predict_false(*mutex == NULL))
239 		ret = EINVAL;
240 	else {
241 		id = TID(curthread);
242 
243 		/*
244 		 * Try to lock the mutex structure, we only need to
245 		 * try once, if failed, the mutex is in used.
246 		 */
247 		ret = _thr_umutex_trylock(&(*mutex)->m_lock, id);
248 		if (ret)
249 			return (ret);
250 		m  = *mutex;
251 		/*
252 		 * Check mutex other fields to see if this mutex is
253 		 * in use. Mostly for prority mutex types, or there
254 		 * are condition variables referencing it.
255 		 */
256 		if (m->m_owner != NULL || m->m_refcount != 0) {
257 			if (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT)
258 				set_inherited_priority(curthread, m);
259 			_thr_umutex_unlock(&m->m_lock, id);
260 			ret = EBUSY;
261 		} else {
262 			/*
263 			 * Save a pointer to the mutex so it can be free'd
264 			 * and set the caller's pointer to NULL.
265 			 */
266 			*mutex = NULL;
267 
268 			if (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT)
269 				set_inherited_priority(curthread, m);
270 			_thr_umutex_unlock(&m->m_lock, id);
271 
272 			MUTEX_ASSERT_NOT_OWNED(m);
273 			free(m);
274 		}
275 	}
276 
277 	return (ret);
278 }
279 
280 
281 #define ENQUEUE_MUTEX(curthread, m)  					\
282 		m->m_owner = curthread;					\
283 		/* Add to the list of owned mutexes: */			\
284 		MUTEX_ASSERT_NOT_OWNED(m);				\
285 		if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)	\
286 			TAILQ_INSERT_TAIL(&curthread->mutexq, m, m_qe);	\
287 		else							\
288 			TAILQ_INSERT_TAIL(&curthread->pp_mutexq, m, m_qe)
289 
290 static int
291 mutex_trylock_common(struct pthread *curthread, pthread_mutex_t *mutex)
292 {
293 	struct pthread_mutex *m;
294 	uint32_t id;
295 	int ret;
296 
297 	id = TID(curthread);
298 	m = *mutex;
299 	ret = _thr_umutex_trylock(&m->m_lock, id);
300 	if (ret == 0) {
301 		ENQUEUE_MUTEX(curthread, m);
302 	} else if (m->m_owner == curthread) {
303 		ret = mutex_self_trylock(m);
304 	} /* else {} */
305 
306 	return (ret);
307 }
308 
309 int
310 __pthread_mutex_trylock(pthread_mutex_t *mutex)
311 {
312 	struct pthread *curthread = _get_curthread();
313 	int ret;
314 
315 	/*
316 	 * If the mutex is statically initialized, perform the dynamic
317 	 * initialization:
318 	 */
319 	if (__predict_false(*mutex == NULL)) {
320 		ret = init_static(curthread, mutex);
321 		if (__predict_false(ret))
322 			return (ret);
323 	}
324 	return (mutex_trylock_common(curthread, mutex));
325 }
326 
327 int
328 _pthread_mutex_trylock(pthread_mutex_t *mutex)
329 {
330 	struct pthread	*curthread = _get_curthread();
331 	int	ret;
332 
333 	/*
334 	 * If the mutex is statically initialized, perform the dynamic
335 	 * initialization marking the mutex private (delete safe):
336 	 */
337 	if (__predict_false(*mutex == NULL)) {
338 		ret = init_static_private(curthread, mutex);
339 		if (__predict_false(ret))
340 			return (ret);
341 	}
342 	return (mutex_trylock_common(curthread, mutex));
343 }
344 
345 static int
346 mutex_lock_common(struct pthread *curthread, pthread_mutex_t *mutex,
347 	const struct timespec * abstime)
348 {
349 	struct  timespec ts, ts2;
350 	struct	pthread_mutex *m;
351 	uint32_t	id;
352 	int	ret;
353 	int	count;
354 
355 	id = TID(curthread);
356 	m = *mutex;
357 	ret = _thr_umutex_trylock2(&m->m_lock, id);
358 	if (ret == 0) {
359 		ENQUEUE_MUTEX(curthread, m);
360 	} else if (m->m_owner == curthread) {
361 		ret = mutex_self_lock(m, abstime);
362 	} else {
363 		/*
364 		 * For adaptive mutexes, spin for a bit in the expectation
365 		 * that if the application requests this mutex type then
366 		 * the lock is likely to be released quickly and it is
367 		 * faster than entering the kernel
368 		 */
369 		if (!_thr_is_smp)
370 			goto yield_loop;
371 
372 		if (m->m_type == PTHREAD_MUTEX_ADAPTIVE_NP) {
373 			count = MUTEX_ADAPTIVE_SPINS;
374 
375 			while (count--) {
376 				ret = _thr_umutex_trylock2(&m->m_lock, id);
377 				if (ret == 0)
378 					break;
379 				CPU_SPINWAIT;
380 			}
381 			if (ret == 0)
382 				goto done;
383 		} else {
384 			if (_thr_spinloops != 0 &&
385 			    !(m->m_lock.m_flags & UMUTEX_PRIO_PROTECT)) {
386 				count = _thr_spinloops;
387 				while (count) {
388 					if (m->m_lock.m_owner == UMUTEX_UNOWNED) {
389 						ret = _thr_umutex_trylock2(&m->m_lock, id);
390 						if (ret == 0)
391 							goto done;
392 					}
393 					CPU_SPINWAIT;
394 					count--;
395 				}
396 			}
397 		}
398 
399 yield_loop:
400 		if (_thr_yieldloops != 0) {
401 			count = _thr_yieldloops;
402 			while (count--) {
403 				_sched_yield();
404 				ret = _thr_umutex_trylock2(&m->m_lock, id);
405 				if (ret == 0)
406 					goto done;
407 			}
408 		}
409 
410 		if (abstime == NULL) {
411 			ret = __thr_umutex_lock(&m->m_lock);
412 		} else if (__predict_false(
413 			   abstime->tv_sec < 0 || abstime->tv_nsec < 0 ||
414 			   abstime->tv_nsec >= 1000000000)) {
415 			ret = EINVAL;
416 		} else {
417 			clock_gettime(CLOCK_REALTIME, &ts);
418 			TIMESPEC_SUB(&ts2, abstime, &ts);
419 			ret = __thr_umutex_timedlock(&m->m_lock, &ts2);
420 			/*
421 			 * Timed out wait is not restarted if
422 			 * it was interrupted, not worth to do it.
423 			 */
424 			if (ret == EINTR)
425 				ret = ETIMEDOUT;
426 		}
427 done:
428 		if (ret == 0)
429 			ENQUEUE_MUTEX(curthread, m);
430 	}
431 	return (ret);
432 }
433 
434 int
435 __pthread_mutex_lock(pthread_mutex_t *m)
436 {
437 	struct pthread *curthread;
438 	int	ret;
439 
440 	_thr_check_init();
441 
442 	curthread = _get_curthread();
443 
444 	/*
445 	 * If the mutex is statically initialized, perform the dynamic
446 	 * initialization:
447 	 */
448 	if (__predict_false(*m == NULL)) {
449 		ret = init_static(curthread, m);
450 		if (__predict_false(ret))
451 			return (ret);
452 	}
453 	return (mutex_lock_common(curthread, m, NULL));
454 }
455 
456 int
457 _pthread_mutex_lock(pthread_mutex_t *m)
458 {
459 	struct pthread *curthread;
460 	int	ret;
461 
462 	_thr_check_init();
463 
464 	curthread = _get_curthread();
465 
466 	/*
467 	 * If the mutex is statically initialized, perform the dynamic
468 	 * initialization marking it private (delete safe):
469 	 */
470 	if (__predict_false(*m == NULL)) {
471 		ret = init_static_private(curthread, m);
472 		if (__predict_false(ret))
473 			return (ret);
474 	}
475 	return (mutex_lock_common(curthread, m, NULL));
476 }
477 
478 int
479 __pthread_mutex_timedlock(pthread_mutex_t *m, const struct timespec *abstime)
480 {
481 	struct pthread *curthread;
482 	int	ret;
483 
484 	_thr_check_init();
485 
486 	curthread = _get_curthread();
487 
488 	/*
489 	 * If the mutex is statically initialized, perform the dynamic
490 	 * initialization:
491 	 */
492 	if (__predict_false(*m == NULL)) {
493 		ret = init_static(curthread, m);
494 		if (__predict_false(ret))
495 			return (ret);
496 	}
497 	return (mutex_lock_common(curthread, m, abstime));
498 }
499 
500 int
501 _pthread_mutex_timedlock(pthread_mutex_t *m, const struct timespec *abstime)
502 {
503 	struct pthread	*curthread;
504 	int	ret;
505 
506 	_thr_check_init();
507 
508 	curthread = _get_curthread();
509 
510 	/*
511 	 * If the mutex is statically initialized, perform the dynamic
512 	 * initialization marking it private (delete safe):
513 	 */
514 	if (__predict_false(*m == NULL)) {
515 		ret = init_static_private(curthread, m);
516 		if (__predict_false(ret))
517 			return (ret);
518 	}
519 	return (mutex_lock_common(curthread, m, abstime));
520 }
521 
522 int
523 _pthread_mutex_unlock(pthread_mutex_t *m)
524 {
525 	return (mutex_unlock_common(m));
526 }
527 
528 int
529 _mutex_cv_lock(pthread_mutex_t *m, int count)
530 {
531 	int	ret;
532 
533 	ret = mutex_lock_common(_get_curthread(), m, NULL);
534 	if (ret == 0) {
535 		(*m)->m_refcount--;
536 		(*m)->m_count += count;
537 	}
538 	return (ret);
539 }
540 
541 static int
542 mutex_self_trylock(pthread_mutex_t m)
543 {
544 	int	ret;
545 
546 	switch (m->m_type) {
547 	case PTHREAD_MUTEX_ERRORCHECK:
548 	case PTHREAD_MUTEX_NORMAL:
549 		ret = EBUSY;
550 		break;
551 
552 	case PTHREAD_MUTEX_RECURSIVE:
553 		/* Increment the lock count: */
554 		if (m->m_count + 1 > 0) {
555 			m->m_count++;
556 			ret = 0;
557 		} else
558 			ret = EAGAIN;
559 		break;
560 
561 	default:
562 		/* Trap invalid mutex types; */
563 		ret = EINVAL;
564 	}
565 
566 	return (ret);
567 }
568 
569 static int
570 mutex_self_lock(pthread_mutex_t m, const struct timespec *abstime)
571 {
572 	struct timespec	ts1, ts2;
573 	int	ret;
574 
575 	switch (m->m_type) {
576 	case PTHREAD_MUTEX_ERRORCHECK:
577 	case PTHREAD_MUTEX_ADAPTIVE_NP:
578 		if (abstime) {
579 			clock_gettime(CLOCK_REALTIME, &ts1);
580 			TIMESPEC_SUB(&ts2, abstime, &ts1);
581 			__sys_nanosleep(&ts2, NULL);
582 			ret = ETIMEDOUT;
583 		} else {
584 			/*
585 			 * POSIX specifies that mutexes should return
586 			 * EDEADLK if a recursive lock is detected.
587 			 */
588 			ret = EDEADLK;
589 		}
590 		break;
591 
592 	case PTHREAD_MUTEX_NORMAL:
593 		/*
594 		 * What SS2 define as a 'normal' mutex.  Intentionally
595 		 * deadlock on attempts to get a lock you already own.
596 		 */
597 		ret = 0;
598 		if (abstime) {
599 			clock_gettime(CLOCK_REALTIME, &ts1);
600 			TIMESPEC_SUB(&ts2, abstime, &ts1);
601 			__sys_nanosleep(&ts2, NULL);
602 			ret = ETIMEDOUT;
603 		} else {
604 			ts1.tv_sec = 30;
605 			ts1.tv_nsec = 0;
606 			for (;;)
607 				__sys_nanosleep(&ts1, NULL);
608 		}
609 		break;
610 
611 	case PTHREAD_MUTEX_RECURSIVE:
612 		/* Increment the lock count: */
613 		if (m->m_count + 1 > 0) {
614 			m->m_count++;
615 			ret = 0;
616 		} else
617 			ret = EAGAIN;
618 		break;
619 
620 	default:
621 		/* Trap invalid mutex types; */
622 		ret = EINVAL;
623 	}
624 
625 	return (ret);
626 }
627 
628 static int
629 mutex_unlock_common(pthread_mutex_t *mutex)
630 {
631 	struct pthread *curthread = _get_curthread();
632 	struct pthread_mutex *m;
633 	uint32_t id;
634 
635 	if (__predict_false((m = *mutex) == NULL))
636 		return (EINVAL);
637 
638 	/*
639 	 * Check if the running thread is not the owner of the mutex.
640 	 */
641 	if (__predict_false(m->m_owner != curthread))
642 		return (EPERM);
643 
644 	id = TID(curthread);
645 	if (__predict_false(
646 		m->m_type == PTHREAD_MUTEX_RECURSIVE &&
647 		m->m_count > 0)) {
648 		m->m_count--;
649 	} else {
650 		m->m_owner = NULL;
651 		/* Remove the mutex from the threads queue. */
652 		MUTEX_ASSERT_IS_OWNED(m);
653 		if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
654 			TAILQ_REMOVE(&curthread->mutexq, m, m_qe);
655 		else {
656 			TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
657 			set_inherited_priority(curthread, m);
658 		}
659 		MUTEX_INIT_LINK(m);
660 		_thr_umutex_unlock(&m->m_lock, id);
661 	}
662 	return (0);
663 }
664 
665 int
666 _mutex_cv_unlock(pthread_mutex_t *mutex, int *count)
667 {
668 	struct pthread *curthread = _get_curthread();
669 	struct pthread_mutex *m;
670 
671 	if (__predict_false((m = *mutex) == NULL))
672 		return (EINVAL);
673 
674 	/*
675 	 * Check if the running thread is not the owner of the mutex.
676 	 */
677 	if (__predict_false(m->m_owner != curthread))
678 		return (EPERM);
679 
680 	/*
681 	 * Clear the count in case this is a recursive mutex.
682 	 */
683 	*count = m->m_count;
684 	m->m_refcount++;
685 	m->m_count = 0;
686 	m->m_owner = NULL;
687 	/* Remove the mutex from the threads queue. */
688 	MUTEX_ASSERT_IS_OWNED(m);
689 	if ((m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
690 		TAILQ_REMOVE(&curthread->mutexq, m, m_qe);
691 	else {
692 		TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
693 		set_inherited_priority(curthread, m);
694 	}
695 	MUTEX_INIT_LINK(m);
696 	_thr_umutex_unlock(&m->m_lock, TID(curthread));
697 	return (0);
698 }
699 
700 void
701 _mutex_unlock_private(pthread_t pthread)
702 {
703 	struct pthread_mutex	*m, *m_next;
704 
705 	TAILQ_FOREACH_SAFE(m, &pthread->mutexq, m_qe, m_next) {
706 		if ((m->m_flags & MUTEX_FLAGS_PRIVATE) != 0)
707 			_pthread_mutex_unlock(&m);
708 	}
709 }
710 
711 int
712 _pthread_mutex_getprioceiling(pthread_mutex_t *mutex,
713 			      int *prioceiling)
714 {
715 	int ret;
716 
717 	if (*mutex == NULL)
718 		ret = EINVAL;
719 	else if (((*mutex)->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
720 		ret = EINVAL;
721 	else {
722 		*prioceiling = (*mutex)->m_lock.m_ceilings[0];
723 		ret = 0;
724 	}
725 
726 	return(ret);
727 }
728 
729 int
730 _pthread_mutex_setprioceiling(pthread_mutex_t *mutex,
731 			      int ceiling, int *old_ceiling)
732 {
733 	struct pthread *curthread = _get_curthread();
734 	struct pthread_mutex *m, *m1, *m2;
735 	int ret;
736 
737 	m = *mutex;
738 	if (m == NULL || (m->m_lock.m_flags & UMUTEX_PRIO_PROTECT) == 0)
739 		return (EINVAL);
740 
741 	ret = __thr_umutex_set_ceiling(&m->m_lock, ceiling, old_ceiling);
742 	if (ret != 0)
743 		return (ret);
744 
745 	if (m->m_owner == curthread) {
746 		MUTEX_ASSERT_IS_OWNED(m);
747 		m1 = TAILQ_PREV(m, mutex_queue, m_qe);
748 		m2 = TAILQ_NEXT(m, m_qe);
749 		if ((m1 != NULL && m1->m_lock.m_ceilings[0] > ceiling) ||
750 		    (m2 != NULL && m2->m_lock.m_ceilings[0] < ceiling)) {
751 			TAILQ_REMOVE(&curthread->pp_mutexq, m, m_qe);
752 			TAILQ_FOREACH(m2, &curthread->pp_mutexq, m_qe) {
753 				if (m2->m_lock.m_ceilings[0] > ceiling) {
754 					TAILQ_INSERT_BEFORE(m2, m, m_qe);
755 					return (0);
756 				}
757 			}
758 			TAILQ_INSERT_TAIL(&curthread->pp_mutexq, m, m_qe);
759 		}
760 	}
761 	return (0);
762 }
763