1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org> 6 * Copyright (c) 1988, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/elf.h> 43 #include <sys/time.h> 44 #include <sys/resourcevar.h> 45 #define _WANT_UCRED 46 #include <sys/ucred.h> 47 #undef _WANT_UCRED 48 #include <sys/proc.h> 49 #include <sys/user.h> 50 #include <sys/stat.h> 51 #include <sys/vnode.h> 52 #include <sys/socket.h> 53 #define _WANT_SOCKET 54 #include <sys/socketvar.h> 55 #include <sys/domain.h> 56 #include <sys/protosw.h> 57 #include <sys/un.h> 58 #define _WANT_UNPCB 59 #include <sys/unpcb.h> 60 #include <sys/sysctl.h> 61 #include <sys/tty.h> 62 #include <sys/filedesc.h> 63 #include <sys/queue.h> 64 #define _WANT_FILE 65 #include <sys/file.h> 66 #include <sys/conf.h> 67 #include <sys/ksem.h> 68 #include <sys/mman.h> 69 #include <sys/capsicum.h> 70 #include <sys/ptrace.h> 71 #define _KERNEL 72 #include <sys/mount.h> 73 #include <sys/filedesc.h> 74 #include <sys/pipe.h> 75 #include <ufs/ufs/quota.h> 76 #include <ufs/ufs/inode.h> 77 #include <fs/devfs/devfs.h> 78 #include <fs/devfs/devfs_int.h> 79 #undef _KERNEL 80 #include <nfs/nfsproto.h> 81 #include <nfsclient/nfs.h> 82 #include <nfsclient/nfsnode.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 88 #include <net/route.h> 89 #include <netinet/in.h> 90 #include <netinet/in_systm.h> 91 #include <netinet/ip.h> 92 #define _WANT_INPCB 93 #include <netinet/in_pcb.h> 94 95 #include <assert.h> 96 #include <ctype.h> 97 #include <err.h> 98 #include <fcntl.h> 99 #include <kvm.h> 100 #include <libutil.h> 101 #include <limits.h> 102 #include <paths.h> 103 #include <pwd.h> 104 #include <stdio.h> 105 #include <stdlib.h> 106 #include <stddef.h> 107 #include <string.h> 108 #include <unistd.h> 109 #include <netdb.h> 110 111 #include <libprocstat.h> 112 #include "libprocstat_internal.h" 113 #include "common_kvm.h" 114 #include "core.h" 115 116 int statfs(const char *, struct statfs *); /* XXX */ 117 118 #define PROCSTAT_KVM 1 119 #define PROCSTAT_SYSCTL 2 120 #define PROCSTAT_CORE 3 121 122 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, 123 size_t nchr, int env); 124 static char *getmnton(kvm_t *kd, struct mount *m); 125 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, 126 int *cntp); 127 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, 128 unsigned int *cntp); 129 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); 130 static struct filestat_list *procstat_getfiles_kvm( 131 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 132 static struct filestat_list *procstat_getfiles_sysctl( 133 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 134 static int procstat_get_pipe_info_sysctl(struct filestat *fst, 135 struct pipestat *pipe, char *errbuf); 136 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 137 struct pipestat *pipe, char *errbuf); 138 static int procstat_get_pts_info_sysctl(struct filestat *fst, 139 struct ptsstat *pts, char *errbuf); 140 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 141 struct ptsstat *pts, char *errbuf); 142 static int procstat_get_sem_info_sysctl(struct filestat *fst, 143 struct semstat *sem, char *errbuf); 144 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 145 struct semstat *sem, char *errbuf); 146 static int procstat_get_shm_info_sysctl(struct filestat *fst, 147 struct shmstat *shm, char *errbuf); 148 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 149 struct shmstat *shm, char *errbuf); 150 static int procstat_get_socket_info_sysctl(struct filestat *fst, 151 struct sockstat *sock, char *errbuf); 152 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 153 struct sockstat *sock, char *errbuf); 154 static int to_filestat_flags(int flags); 155 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 156 struct vnstat *vn, char *errbuf); 157 static int procstat_get_vnode_info_sysctl(struct filestat *fst, 158 struct vnstat *vn, char *errbuf); 159 static gid_t *procstat_getgroups_core(struct procstat_core *core, 160 unsigned int *count); 161 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, 162 unsigned int *count); 163 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); 164 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, 165 int *cntp); 166 static int procstat_getosrel_core(struct procstat_core *core, 167 int *osrelp); 168 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, 169 int *osrelp); 170 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); 171 static int procstat_getpathname_core(struct procstat_core *core, 172 char *pathname, size_t maxlen); 173 static int procstat_getpathname_sysctl(pid_t pid, char *pathname, 174 size_t maxlen); 175 static int procstat_getrlimit_core(struct procstat_core *core, int which, 176 struct rlimit* rlimit); 177 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, 178 int which, struct rlimit* rlimit); 179 static int procstat_getrlimit_sysctl(pid_t pid, int which, 180 struct rlimit* rlimit); 181 static int procstat_getumask_core(struct procstat_core *core, 182 unsigned short *maskp); 183 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, 184 unsigned short *maskp); 185 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); 186 static int vntype2psfsttype(int type); 187 188 void 189 procstat_close(struct procstat *procstat) 190 { 191 192 assert(procstat); 193 if (procstat->type == PROCSTAT_KVM) 194 kvm_close(procstat->kd); 195 else if (procstat->type == PROCSTAT_CORE) 196 procstat_core_close(procstat->core); 197 procstat_freeargv(procstat); 198 procstat_freeenvv(procstat); 199 free(procstat); 200 } 201 202 struct procstat * 203 procstat_open_sysctl(void) 204 { 205 struct procstat *procstat; 206 207 procstat = calloc(1, sizeof(*procstat)); 208 if (procstat == NULL) { 209 warn("malloc()"); 210 return (NULL); 211 } 212 procstat->type = PROCSTAT_SYSCTL; 213 return (procstat); 214 } 215 216 struct procstat * 217 procstat_open_kvm(const char *nlistf, const char *memf) 218 { 219 struct procstat *procstat; 220 kvm_t *kd; 221 char buf[_POSIX2_LINE_MAX]; 222 223 procstat = calloc(1, sizeof(*procstat)); 224 if (procstat == NULL) { 225 warn("malloc()"); 226 return (NULL); 227 } 228 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); 229 if (kd == NULL) { 230 warnx("kvm_openfiles(): %s", buf); 231 free(procstat); 232 return (NULL); 233 } 234 procstat->type = PROCSTAT_KVM; 235 procstat->kd = kd; 236 return (procstat); 237 } 238 239 struct procstat * 240 procstat_open_core(const char *filename) 241 { 242 struct procstat *procstat; 243 struct procstat_core *core; 244 245 procstat = calloc(1, sizeof(*procstat)); 246 if (procstat == NULL) { 247 warn("malloc()"); 248 return (NULL); 249 } 250 core = procstat_core_open(filename); 251 if (core == NULL) { 252 free(procstat); 253 return (NULL); 254 } 255 procstat->type = PROCSTAT_CORE; 256 procstat->core = core; 257 return (procstat); 258 } 259 260 struct kinfo_proc * 261 procstat_getprocs(struct procstat *procstat, int what, int arg, 262 unsigned int *count) 263 { 264 struct kinfo_proc *p0, *p; 265 size_t len, olen; 266 int name[4]; 267 int cnt; 268 int error; 269 270 assert(procstat); 271 assert(count); 272 p = NULL; 273 if (procstat->type == PROCSTAT_KVM) { 274 *count = 0; 275 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); 276 if (p0 == NULL || cnt <= 0) 277 return (NULL); 278 *count = cnt; 279 len = *count * sizeof(*p); 280 p = malloc(len); 281 if (p == NULL) { 282 warnx("malloc(%zu)", len); 283 goto fail; 284 } 285 bcopy(p0, p, len); 286 return (p); 287 } else if (procstat->type == PROCSTAT_SYSCTL) { 288 len = 0; 289 name[0] = CTL_KERN; 290 name[1] = KERN_PROC; 291 name[2] = what; 292 name[3] = arg; 293 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 294 if (error < 0 && errno != EPERM) { 295 warn("sysctl(kern.proc)"); 296 goto fail; 297 } 298 if (len == 0) { 299 warnx("no processes?"); 300 goto fail; 301 } 302 do { 303 len += len / 10; 304 p = reallocf(p, len); 305 if (p == NULL) { 306 warnx("reallocf(%zu)", len); 307 goto fail; 308 } 309 olen = len; 310 error = sysctl(name, nitems(name), p, &len, NULL, 0); 311 } while (error < 0 && errno == ENOMEM && olen == len); 312 if (error < 0 && errno != EPERM) { 313 warn("sysctl(kern.proc)"); 314 goto fail; 315 } 316 /* Perform simple consistency checks. */ 317 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 318 warnx("kinfo_proc structure size mismatch (len = %zu)", len); 319 goto fail; 320 } 321 *count = len / sizeof(*p); 322 return (p); 323 } else if (procstat->type == PROCSTAT_CORE) { 324 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, 325 &len); 326 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 327 warnx("kinfo_proc structure size mismatch"); 328 goto fail; 329 } 330 *count = len / sizeof(*p); 331 return (p); 332 } else { 333 warnx("unknown access method: %d", procstat->type); 334 return (NULL); 335 } 336 fail: 337 if (p) 338 free(p); 339 return (NULL); 340 } 341 342 void 343 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) 344 { 345 346 if (p != NULL) 347 free(p); 348 p = NULL; 349 } 350 351 struct filestat_list * 352 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 353 { 354 355 switch(procstat->type) { 356 case PROCSTAT_KVM: 357 return (procstat_getfiles_kvm(procstat, kp, mmapped)); 358 case PROCSTAT_SYSCTL: 359 case PROCSTAT_CORE: 360 return (procstat_getfiles_sysctl(procstat, kp, mmapped)); 361 default: 362 warnx("unknown access method: %d", procstat->type); 363 return (NULL); 364 } 365 } 366 367 void 368 procstat_freefiles(struct procstat *procstat, struct filestat_list *head) 369 { 370 struct filestat *fst, *tmp; 371 372 STAILQ_FOREACH_SAFE(fst, head, next, tmp) { 373 if (fst->fs_path != NULL) 374 free(fst->fs_path); 375 free(fst); 376 } 377 free(head); 378 if (procstat->vmentries != NULL) { 379 free(procstat->vmentries); 380 procstat->vmentries = NULL; 381 } 382 if (procstat->files != NULL) { 383 free(procstat->files); 384 procstat->files = NULL; 385 } 386 } 387 388 static struct filestat * 389 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, 390 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp) 391 { 392 struct filestat *entry; 393 394 entry = calloc(1, sizeof(*entry)); 395 if (entry == NULL) { 396 warn("malloc()"); 397 return (NULL); 398 } 399 entry->fs_typedep = typedep; 400 entry->fs_fflags = fflags; 401 entry->fs_uflags = uflags; 402 entry->fs_fd = fd; 403 entry->fs_type = type; 404 entry->fs_ref_count = refcount; 405 entry->fs_offset = offset; 406 entry->fs_path = path; 407 if (cap_rightsp != NULL) 408 entry->fs_cap_rights = *cap_rightsp; 409 else 410 cap_rights_init(&entry->fs_cap_rights); 411 return (entry); 412 } 413 414 static struct vnode * 415 getctty(kvm_t *kd, struct kinfo_proc *kp) 416 { 417 struct pgrp pgrp; 418 struct proc proc; 419 struct session sess; 420 int error; 421 422 assert(kp); 423 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 424 sizeof(proc)); 425 if (error == 0) { 426 warnx("can't read proc struct at %p for pid %d", 427 kp->ki_paddr, kp->ki_pid); 428 return (NULL); 429 } 430 if (proc.p_pgrp == NULL) 431 return (NULL); 432 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, 433 sizeof(pgrp)); 434 if (error == 0) { 435 warnx("can't read pgrp struct at %p for pid %d", 436 proc.p_pgrp, kp->ki_pid); 437 return (NULL); 438 } 439 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, 440 sizeof(sess)); 441 if (error == 0) { 442 warnx("can't read session struct at %p for pid %d", 443 pgrp.pg_session, kp->ki_pid); 444 return (NULL); 445 } 446 return (sess.s_ttyvp); 447 } 448 449 static int 450 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest) 451 { 452 kvm_t *kd; 453 454 kd = (kvm_t *)token; 455 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest))); 456 } 457 458 static struct filestat_list * 459 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 460 { 461 struct file file; 462 struct filedesc filed; 463 struct fdescenttbl *fdt; 464 struct pwd pwd; 465 unsigned long pwd_addr; 466 struct vm_map_entry vmentry; 467 struct vm_object object; 468 struct vmspace vmspace; 469 vm_map_entry_t entryp; 470 vm_object_t objp; 471 struct vnode *vp; 472 struct filestat *entry; 473 struct filestat_list *head; 474 kvm_t *kd; 475 void *data; 476 int fflags; 477 unsigned int i; 478 int prot, type; 479 size_t fdt_size; 480 unsigned int nfiles; 481 bool haspwd; 482 483 assert(procstat); 484 kd = procstat->kd; 485 if (kd == NULL) 486 return (NULL); 487 if (kp->ki_fd == NULL) 488 return (NULL); 489 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, 490 sizeof(filed))) { 491 warnx("can't read filedesc at %p", (void *)kp->ki_fd); 492 return (NULL); 493 } 494 haspwd = false; 495 pwd_addr = (unsigned long)(FILEDESC_KVM_LOAD_PWD(&filed)); 496 if (pwd_addr != 0) { 497 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) { 498 warnx("can't read fd_pwd at %p", (void *)pwd_addr); 499 return (NULL); 500 } 501 haspwd = true; 502 } 503 504 /* 505 * Allocate list head. 506 */ 507 head = malloc(sizeof(*head)); 508 if (head == NULL) 509 return (NULL); 510 STAILQ_INIT(head); 511 512 /* root directory vnode, if one. */ 513 if (haspwd) { 514 if (pwd.pwd_rdir) { 515 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1, 516 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL); 517 if (entry != NULL) 518 STAILQ_INSERT_TAIL(head, entry, next); 519 } 520 /* current working directory vnode. */ 521 if (pwd.pwd_cdir) { 522 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1, 523 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL); 524 if (entry != NULL) 525 STAILQ_INSERT_TAIL(head, entry, next); 526 } 527 /* jail root, if any. */ 528 if (pwd.pwd_jdir) { 529 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1, 530 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL); 531 if (entry != NULL) 532 STAILQ_INSERT_TAIL(head, entry, next); 533 } 534 } 535 /* ktrace vnode, if one */ 536 if (kp->ki_tracep) { 537 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, 538 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 539 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL); 540 if (entry != NULL) 541 STAILQ_INSERT_TAIL(head, entry, next); 542 } 543 /* text vnode, if one */ 544 if (kp->ki_textvp) { 545 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, 546 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL); 547 if (entry != NULL) 548 STAILQ_INSERT_TAIL(head, entry, next); 549 } 550 /* Controlling terminal. */ 551 if ((vp = getctty(kd, kp)) != NULL) { 552 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, 553 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 554 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL); 555 if (entry != NULL) 556 STAILQ_INSERT_TAIL(head, entry, next); 557 } 558 559 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles, 560 sizeof(nfiles))) { 561 warnx("can't read fd_files at %p", (void *)filed.fd_files); 562 return (NULL); 563 } 564 565 fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent); 566 fdt = malloc(fdt_size); 567 if (fdt == NULL) { 568 warn("malloc(%zu)", fdt_size); 569 goto do_mmapped; 570 } 571 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) { 572 warnx("cannot read file structures at %p", (void *)filed.fd_files); 573 free(fdt); 574 goto do_mmapped; 575 } 576 for (i = 0; i < nfiles; i++) { 577 if (fdt->fdt_ofiles[i].fde_file == NULL) { 578 continue; 579 } 580 if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file, 581 sizeof(struct file))) { 582 warnx("can't read file %d at %p", i, 583 (void *)fdt->fdt_ofiles[i].fde_file); 584 continue; 585 } 586 switch (file.f_type) { 587 case DTYPE_VNODE: 588 type = PS_FST_TYPE_VNODE; 589 data = file.f_vnode; 590 break; 591 case DTYPE_SOCKET: 592 type = PS_FST_TYPE_SOCKET; 593 data = file.f_data; 594 break; 595 case DTYPE_PIPE: 596 type = PS_FST_TYPE_PIPE; 597 data = file.f_data; 598 break; 599 case DTYPE_FIFO: 600 type = PS_FST_TYPE_FIFO; 601 data = file.f_vnode; 602 break; 603 #ifdef DTYPE_PTS 604 case DTYPE_PTS: 605 type = PS_FST_TYPE_PTS; 606 data = file.f_data; 607 break; 608 #endif 609 case DTYPE_SEM: 610 type = PS_FST_TYPE_SEM; 611 data = file.f_data; 612 break; 613 case DTYPE_SHM: 614 type = PS_FST_TYPE_SHM; 615 data = file.f_data; 616 break; 617 case DTYPE_PROCDESC: 618 type = PS_FST_TYPE_PROCDESC; 619 data = file.f_data; 620 break; 621 case DTYPE_DEV: 622 type = PS_FST_TYPE_DEV; 623 data = file.f_data; 624 break; 625 default: 626 continue; 627 } 628 /* XXXRW: No capability rights support for kvm yet. */ 629 entry = filestat_new_entry(data, type, i, 630 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL); 631 if (entry != NULL) 632 STAILQ_INSERT_TAIL(head, entry, next); 633 } 634 free(fdt); 635 636 do_mmapped: 637 638 /* 639 * Process mmapped files if requested. 640 */ 641 if (mmapped) { 642 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, 643 sizeof(vmspace))) { 644 warnx("can't read vmspace at %p", 645 (void *)kp->ki_vmspace); 646 goto exit; 647 } 648 649 vmentry = vmspace.vm_map.header; 650 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader); 651 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header; 652 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) { 653 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) 654 continue; 655 if ((objp = vmentry.object.vm_object) == NULL) 656 continue; 657 for (; objp; objp = object.backing_object) { 658 if (!kvm_read_all(kd, (unsigned long)objp, 659 &object, sizeof(object))) { 660 warnx("can't read vm_object at %p", 661 (void *)objp); 662 break; 663 } 664 } 665 666 /* We want only vnode objects. */ 667 if (object.type != OBJT_VNODE) 668 continue; 669 670 prot = vmentry.protection; 671 fflags = 0; 672 if (prot & VM_PROT_READ) 673 fflags = PS_FST_FFLAG_READ; 674 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && 675 prot & VM_PROT_WRITE) 676 fflags |= PS_FST_FFLAG_WRITE; 677 678 /* 679 * Create filestat entry. 680 */ 681 entry = filestat_new_entry(object.handle, 682 PS_FST_TYPE_VNODE, -1, fflags, 683 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL); 684 if (entry != NULL) 685 STAILQ_INSERT_TAIL(head, entry, next); 686 } 687 if (entryp == NULL) 688 warnx("can't read vm_map_entry"); 689 } 690 exit: 691 return (head); 692 } 693 694 /* 695 * kinfo types to filestat translation. 696 */ 697 static int 698 kinfo_type2fst(int kftype) 699 { 700 static struct { 701 int kf_type; 702 int fst_type; 703 } kftypes2fst[] = { 704 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC }, 705 { KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO }, 706 { KF_TYPE_DEV, PS_FST_TYPE_DEV }, 707 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, 708 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, 709 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, 710 { KF_TYPE_NONE, PS_FST_TYPE_NONE }, 711 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, 712 { KF_TYPE_PTS, PS_FST_TYPE_PTS }, 713 { KF_TYPE_SEM, PS_FST_TYPE_SEM }, 714 { KF_TYPE_SHM, PS_FST_TYPE_SHM }, 715 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, 716 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, 717 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } 718 }; 719 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) 720 unsigned int i; 721 722 for (i = 0; i < NKFTYPES; i++) 723 if (kftypes2fst[i].kf_type == kftype) 724 break; 725 if (i == NKFTYPES) 726 return (PS_FST_TYPE_UNKNOWN); 727 return (kftypes2fst[i].fst_type); 728 } 729 730 /* 731 * kinfo flags to filestat translation. 732 */ 733 static int 734 kinfo_fflags2fst(int kfflags) 735 { 736 static struct { 737 int kf_flag; 738 int fst_flag; 739 } kfflags2fst[] = { 740 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, 741 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, 742 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, 743 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, 744 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, 745 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, 746 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, 747 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, 748 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, 749 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 750 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 751 { KF_FLAG_READ, PS_FST_FFLAG_READ }, 752 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, 753 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, 754 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } 755 }; 756 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) 757 unsigned int i; 758 int flags; 759 760 flags = 0; 761 for (i = 0; i < NKFFLAGS; i++) 762 if ((kfflags & kfflags2fst[i].kf_flag) != 0) 763 flags |= kfflags2fst[i].fst_flag; 764 return (flags); 765 } 766 767 static int 768 kinfo_uflags2fst(int fd) 769 { 770 771 switch (fd) { 772 case KF_FD_TYPE_CTTY: 773 return (PS_FST_UFLAG_CTTY); 774 case KF_FD_TYPE_CWD: 775 return (PS_FST_UFLAG_CDIR); 776 case KF_FD_TYPE_JAIL: 777 return (PS_FST_UFLAG_JAIL); 778 case KF_FD_TYPE_TEXT: 779 return (PS_FST_UFLAG_TEXT); 780 case KF_FD_TYPE_TRACE: 781 return (PS_FST_UFLAG_TRACE); 782 case KF_FD_TYPE_ROOT: 783 return (PS_FST_UFLAG_RDIR); 784 } 785 return (0); 786 } 787 788 static struct kinfo_file * 789 kinfo_getfile_core(struct procstat_core *core, int *cntp) 790 { 791 int cnt; 792 size_t len; 793 char *buf, *bp, *eb; 794 struct kinfo_file *kif, *kp, *kf; 795 796 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); 797 if (buf == NULL) 798 return (NULL); 799 /* 800 * XXXMG: The code below is just copy&past from libutil. 801 * The code duplication can be avoided if libutil 802 * is extended to provide something like: 803 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, 804 * size_t len, int *cntp); 805 */ 806 807 /* Pass 1: count items */ 808 cnt = 0; 809 bp = buf; 810 eb = buf + len; 811 while (bp < eb) { 812 kf = (struct kinfo_file *)(uintptr_t)bp; 813 if (kf->kf_structsize == 0) 814 break; 815 bp += kf->kf_structsize; 816 cnt++; 817 } 818 819 kif = calloc(cnt, sizeof(*kif)); 820 if (kif == NULL) { 821 free(buf); 822 return (NULL); 823 } 824 bp = buf; 825 eb = buf + len; 826 kp = kif; 827 /* Pass 2: unpack */ 828 while (bp < eb) { 829 kf = (struct kinfo_file *)(uintptr_t)bp; 830 if (kf->kf_structsize == 0) 831 break; 832 /* Copy/expand into pre-zeroed buffer */ 833 memcpy(kp, kf, kf->kf_structsize); 834 /* Advance to next packed record */ 835 bp += kf->kf_structsize; 836 /* Set field size to fixed length, advance */ 837 kp->kf_structsize = sizeof(*kp); 838 kp++; 839 } 840 free(buf); 841 *cntp = cnt; 842 return (kif); /* Caller must free() return value */ 843 } 844 845 static struct filestat_list * 846 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, 847 int mmapped) 848 { 849 struct kinfo_file *kif, *files; 850 struct kinfo_vmentry *kve, *vmentries; 851 struct filestat_list *head; 852 struct filestat *entry; 853 char *path; 854 off_t offset; 855 int cnt, fd, fflags; 856 int i, type, uflags; 857 int refcount; 858 cap_rights_t cap_rights; 859 860 assert(kp); 861 if (kp->ki_fd == NULL) 862 return (NULL); 863 switch(procstat->type) { 864 case PROCSTAT_SYSCTL: 865 files = kinfo_getfile(kp->ki_pid, &cnt); 866 break; 867 case PROCSTAT_CORE: 868 files = kinfo_getfile_core(procstat->core, &cnt); 869 break; 870 default: 871 assert(!"invalid type"); 872 } 873 if (files == NULL && errno != EPERM) { 874 warn("kinfo_getfile()"); 875 return (NULL); 876 } 877 procstat->files = files; 878 879 /* 880 * Allocate list head. 881 */ 882 head = malloc(sizeof(*head)); 883 if (head == NULL) 884 return (NULL); 885 STAILQ_INIT(head); 886 for (i = 0; i < cnt; i++) { 887 kif = &files[i]; 888 889 type = kinfo_type2fst(kif->kf_type); 890 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; 891 fflags = kinfo_fflags2fst(kif->kf_flags); 892 uflags = kinfo_uflags2fst(kif->kf_fd); 893 refcount = kif->kf_ref_count; 894 offset = kif->kf_offset; 895 if (*kif->kf_path != '\0') 896 path = strdup(kif->kf_path); 897 else 898 path = NULL; 899 cap_rights = kif->kf_cap_rights; 900 901 /* 902 * Create filestat entry. 903 */ 904 entry = filestat_new_entry(kif, type, fd, fflags, uflags, 905 refcount, offset, path, &cap_rights); 906 if (entry != NULL) 907 STAILQ_INSERT_TAIL(head, entry, next); 908 } 909 if (mmapped != 0) { 910 vmentries = procstat_getvmmap(procstat, kp, &cnt); 911 procstat->vmentries = vmentries; 912 if (vmentries == NULL || cnt == 0) 913 goto fail; 914 for (i = 0; i < cnt; i++) { 915 kve = &vmentries[i]; 916 if (kve->kve_type != KVME_TYPE_VNODE) 917 continue; 918 fflags = 0; 919 if (kve->kve_protection & KVME_PROT_READ) 920 fflags = PS_FST_FFLAG_READ; 921 if ((kve->kve_flags & KVME_FLAG_COW) == 0 && 922 kve->kve_protection & KVME_PROT_WRITE) 923 fflags |= PS_FST_FFLAG_WRITE; 924 offset = kve->kve_offset; 925 refcount = kve->kve_ref_count; 926 if (*kve->kve_path != '\0') 927 path = strdup(kve->kve_path); 928 else 929 path = NULL; 930 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, 931 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, 932 NULL); 933 if (entry != NULL) 934 STAILQ_INSERT_TAIL(head, entry, next); 935 } 936 } 937 fail: 938 return (head); 939 } 940 941 int 942 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, 943 struct pipestat *ps, char *errbuf) 944 { 945 946 assert(ps); 947 if (procstat->type == PROCSTAT_KVM) { 948 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, 949 errbuf)); 950 } else if (procstat->type == PROCSTAT_SYSCTL || 951 procstat->type == PROCSTAT_CORE) { 952 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); 953 } else { 954 warnx("unknown access method: %d", procstat->type); 955 if (errbuf != NULL) 956 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 957 return (1); 958 } 959 } 960 961 static int 962 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 963 struct pipestat *ps, char *errbuf) 964 { 965 struct pipe pi; 966 void *pipep; 967 968 assert(kd); 969 assert(ps); 970 assert(fst); 971 bzero(ps, sizeof(*ps)); 972 pipep = fst->fs_typedep; 973 if (pipep == NULL) 974 goto fail; 975 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { 976 warnx("can't read pipe at %p", (void *)pipep); 977 goto fail; 978 } 979 ps->addr = (uintptr_t)pipep; 980 ps->peer = (uintptr_t)pi.pipe_peer; 981 ps->buffer_cnt = pi.pipe_buffer.cnt; 982 return (0); 983 984 fail: 985 if (errbuf != NULL) 986 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 987 return (1); 988 } 989 990 static int 991 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, 992 char *errbuf __unused) 993 { 994 struct kinfo_file *kif; 995 996 assert(ps); 997 assert(fst); 998 bzero(ps, sizeof(*ps)); 999 kif = fst->fs_typedep; 1000 if (kif == NULL) 1001 return (1); 1002 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; 1003 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; 1004 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; 1005 return (0); 1006 } 1007 1008 int 1009 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, 1010 struct ptsstat *pts, char *errbuf) 1011 { 1012 1013 assert(pts); 1014 if (procstat->type == PROCSTAT_KVM) { 1015 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, 1016 errbuf)); 1017 } else if (procstat->type == PROCSTAT_SYSCTL || 1018 procstat->type == PROCSTAT_CORE) { 1019 return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); 1020 } else { 1021 warnx("unknown access method: %d", procstat->type); 1022 if (errbuf != NULL) 1023 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1024 return (1); 1025 } 1026 } 1027 1028 static int 1029 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 1030 struct ptsstat *pts, char *errbuf) 1031 { 1032 struct tty tty; 1033 void *ttyp; 1034 1035 assert(kd); 1036 assert(pts); 1037 assert(fst); 1038 bzero(pts, sizeof(*pts)); 1039 ttyp = fst->fs_typedep; 1040 if (ttyp == NULL) 1041 goto fail; 1042 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { 1043 warnx("can't read tty at %p", (void *)ttyp); 1044 goto fail; 1045 } 1046 pts->dev = dev2udev(kd, tty.t_dev); 1047 (void)kdevtoname(kd, tty.t_dev, pts->devname); 1048 return (0); 1049 1050 fail: 1051 if (errbuf != NULL) 1052 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1053 return (1); 1054 } 1055 1056 static int 1057 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, 1058 char *errbuf __unused) 1059 { 1060 struct kinfo_file *kif; 1061 1062 assert(pts); 1063 assert(fst); 1064 bzero(pts, sizeof(*pts)); 1065 kif = fst->fs_typedep; 1066 if (kif == NULL) 1067 return (0); 1068 pts->dev = kif->kf_un.kf_pts.kf_pts_dev; 1069 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); 1070 return (0); 1071 } 1072 1073 int 1074 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, 1075 struct semstat *sem, char *errbuf) 1076 { 1077 1078 assert(sem); 1079 if (procstat->type == PROCSTAT_KVM) { 1080 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, 1081 errbuf)); 1082 } else if (procstat->type == PROCSTAT_SYSCTL || 1083 procstat->type == PROCSTAT_CORE) { 1084 return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); 1085 } else { 1086 warnx("unknown access method: %d", procstat->type); 1087 if (errbuf != NULL) 1088 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1089 return (1); 1090 } 1091 } 1092 1093 static int 1094 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 1095 struct semstat *sem, char *errbuf) 1096 { 1097 struct ksem ksem; 1098 void *ksemp; 1099 char *path; 1100 int i; 1101 1102 assert(kd); 1103 assert(sem); 1104 assert(fst); 1105 bzero(sem, sizeof(*sem)); 1106 ksemp = fst->fs_typedep; 1107 if (ksemp == NULL) 1108 goto fail; 1109 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, 1110 sizeof(struct ksem))) { 1111 warnx("can't read ksem at %p", (void *)ksemp); 1112 goto fail; 1113 } 1114 sem->mode = S_IFREG | ksem.ks_mode; 1115 sem->value = ksem.ks_value; 1116 if (fst->fs_path == NULL && ksem.ks_path != NULL) { 1117 path = malloc(MAXPATHLEN); 1118 for (i = 0; i < MAXPATHLEN - 1; i++) { 1119 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, 1120 path + i, 1)) 1121 break; 1122 if (path[i] == '\0') 1123 break; 1124 } 1125 path[i] = '\0'; 1126 if (i == 0) 1127 free(path); 1128 else 1129 fst->fs_path = path; 1130 } 1131 return (0); 1132 1133 fail: 1134 if (errbuf != NULL) 1135 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1136 return (1); 1137 } 1138 1139 static int 1140 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, 1141 char *errbuf __unused) 1142 { 1143 struct kinfo_file *kif; 1144 1145 assert(sem); 1146 assert(fst); 1147 bzero(sem, sizeof(*sem)); 1148 kif = fst->fs_typedep; 1149 if (kif == NULL) 1150 return (0); 1151 sem->value = kif->kf_un.kf_sem.kf_sem_value; 1152 sem->mode = kif->kf_un.kf_sem.kf_sem_mode; 1153 return (0); 1154 } 1155 1156 int 1157 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, 1158 struct shmstat *shm, char *errbuf) 1159 { 1160 1161 assert(shm); 1162 if (procstat->type == PROCSTAT_KVM) { 1163 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, 1164 errbuf)); 1165 } else if (procstat->type == PROCSTAT_SYSCTL || 1166 procstat->type == PROCSTAT_CORE) { 1167 return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); 1168 } else { 1169 warnx("unknown access method: %d", procstat->type); 1170 if (errbuf != NULL) 1171 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1172 return (1); 1173 } 1174 } 1175 1176 static int 1177 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 1178 struct shmstat *shm, char *errbuf) 1179 { 1180 struct shmfd shmfd; 1181 void *shmfdp; 1182 char *path; 1183 int i; 1184 1185 assert(kd); 1186 assert(shm); 1187 assert(fst); 1188 bzero(shm, sizeof(*shm)); 1189 shmfdp = fst->fs_typedep; 1190 if (shmfdp == NULL) 1191 goto fail; 1192 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, 1193 sizeof(struct shmfd))) { 1194 warnx("can't read shmfd at %p", (void *)shmfdp); 1195 goto fail; 1196 } 1197 shm->mode = S_IFREG | shmfd.shm_mode; 1198 shm->size = shmfd.shm_size; 1199 if (fst->fs_path == NULL && shmfd.shm_path != NULL) { 1200 path = malloc(MAXPATHLEN); 1201 for (i = 0; i < MAXPATHLEN - 1; i++) { 1202 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, 1203 path + i, 1)) 1204 break; 1205 if (path[i] == '\0') 1206 break; 1207 } 1208 path[i] = '\0'; 1209 if (i == 0) 1210 free(path); 1211 else 1212 fst->fs_path = path; 1213 } 1214 return (0); 1215 1216 fail: 1217 if (errbuf != NULL) 1218 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1219 return (1); 1220 } 1221 1222 static int 1223 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, 1224 char *errbuf __unused) 1225 { 1226 struct kinfo_file *kif; 1227 1228 assert(shm); 1229 assert(fst); 1230 bzero(shm, sizeof(*shm)); 1231 kif = fst->fs_typedep; 1232 if (kif == NULL) 1233 return (0); 1234 shm->size = kif->kf_un.kf_file.kf_file_size; 1235 shm->mode = kif->kf_un.kf_file.kf_file_mode; 1236 return (0); 1237 } 1238 1239 int 1240 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, 1241 struct vnstat *vn, char *errbuf) 1242 { 1243 1244 assert(vn); 1245 if (procstat->type == PROCSTAT_KVM) { 1246 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, 1247 errbuf)); 1248 } else if (procstat->type == PROCSTAT_SYSCTL || 1249 procstat->type == PROCSTAT_CORE) { 1250 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); 1251 } else { 1252 warnx("unknown access method: %d", procstat->type); 1253 if (errbuf != NULL) 1254 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1255 return (1); 1256 } 1257 } 1258 1259 static int 1260 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 1261 struct vnstat *vn, char *errbuf) 1262 { 1263 /* Filesystem specific handlers. */ 1264 #define FSTYPE(fst) {#fst, fst##_filestat} 1265 struct { 1266 const char *tag; 1267 int (*handler)(kvm_t *kd, struct vnode *vp, 1268 struct vnstat *vn); 1269 } fstypes[] = { 1270 FSTYPE(devfs), 1271 FSTYPE(isofs), 1272 FSTYPE(msdosfs), 1273 FSTYPE(nfs), 1274 FSTYPE(smbfs), 1275 FSTYPE(udf), 1276 FSTYPE(ufs), 1277 #ifdef LIBPROCSTAT_ZFS 1278 FSTYPE(zfs), 1279 #endif 1280 }; 1281 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) 1282 struct vnode vnode; 1283 char tagstr[12]; 1284 void *vp; 1285 int error; 1286 unsigned int i; 1287 1288 assert(kd); 1289 assert(vn); 1290 assert(fst); 1291 vp = fst->fs_typedep; 1292 if (vp == NULL) 1293 goto fail; 1294 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); 1295 if (error == 0) { 1296 warnx("can't read vnode at %p", (void *)vp); 1297 goto fail; 1298 } 1299 bzero(vn, sizeof(*vn)); 1300 vn->vn_type = vntype2psfsttype(vnode.v_type); 1301 if (vnode.v_type == VNON || vnode.v_type == VBAD) 1302 return (0); 1303 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name, 1304 tagstr, sizeof(tagstr)); 1305 if (error == 0) { 1306 warnx("can't read lo_name at %p", (void *)vp); 1307 goto fail; 1308 } 1309 tagstr[sizeof(tagstr) - 1] = '\0'; 1310 1311 /* 1312 * Find appropriate handler. 1313 */ 1314 for (i = 0; i < NTYPES; i++) 1315 if (!strcmp(fstypes[i].tag, tagstr)) { 1316 if (fstypes[i].handler(kd, &vnode, vn) != 0) { 1317 goto fail; 1318 } 1319 break; 1320 } 1321 if (i == NTYPES) { 1322 if (errbuf != NULL) 1323 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); 1324 return (1); 1325 } 1326 vn->vn_mntdir = getmnton(kd, vnode.v_mount); 1327 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) && 1328 vnode.v_rdev != NULL){ 1329 vn->vn_dev = dev2udev(kd, vnode.v_rdev); 1330 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); 1331 } else { 1332 vn->vn_dev = -1; 1333 } 1334 return (0); 1335 1336 fail: 1337 if (errbuf != NULL) 1338 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1339 return (1); 1340 } 1341 1342 /* 1343 * kinfo vnode type to filestat translation. 1344 */ 1345 static int 1346 kinfo_vtype2fst(int kfvtype) 1347 { 1348 static struct { 1349 int kf_vtype; 1350 int fst_vtype; 1351 } kfvtypes2fst[] = { 1352 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, 1353 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, 1354 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, 1355 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, 1356 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, 1357 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, 1358 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, 1359 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, 1360 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } 1361 }; 1362 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) 1363 unsigned int i; 1364 1365 for (i = 0; i < NKFVTYPES; i++) 1366 if (kfvtypes2fst[i].kf_vtype == kfvtype) 1367 break; 1368 if (i == NKFVTYPES) 1369 return (PS_FST_VTYPE_UNKNOWN); 1370 return (kfvtypes2fst[i].fst_vtype); 1371 } 1372 1373 static int 1374 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, 1375 char *errbuf) 1376 { 1377 struct statfs stbuf; 1378 struct kinfo_file *kif; 1379 struct kinfo_vmentry *kve; 1380 char *name, *path; 1381 uint64_t fileid; 1382 uint64_t size; 1383 uint64_t fsid; 1384 uint64_t rdev; 1385 uint16_t mode; 1386 int vntype; 1387 int status; 1388 1389 assert(fst); 1390 assert(vn); 1391 bzero(vn, sizeof(*vn)); 1392 if (fst->fs_typedep == NULL) 1393 return (1); 1394 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { 1395 kve = fst->fs_typedep; 1396 fileid = kve->kve_vn_fileid; 1397 fsid = kve->kve_vn_fsid; 1398 mode = kve->kve_vn_mode; 1399 path = kve->kve_path; 1400 rdev = kve->kve_vn_rdev; 1401 size = kve->kve_vn_size; 1402 vntype = kinfo_vtype2fst(kve->kve_vn_type); 1403 status = kve->kve_status; 1404 } else { 1405 kif = fst->fs_typedep; 1406 fileid = kif->kf_un.kf_file.kf_file_fileid; 1407 fsid = kif->kf_un.kf_file.kf_file_fsid; 1408 mode = kif->kf_un.kf_file.kf_file_mode; 1409 path = kif->kf_path; 1410 rdev = kif->kf_un.kf_file.kf_file_rdev; 1411 size = kif->kf_un.kf_file.kf_file_size; 1412 vntype = kinfo_vtype2fst(kif->kf_vnode_type); 1413 status = kif->kf_status; 1414 } 1415 vn->vn_type = vntype; 1416 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) 1417 return (0); 1418 if ((status & KF_ATTR_VALID) == 0) { 1419 if (errbuf != NULL) { 1420 snprintf(errbuf, _POSIX2_LINE_MAX, 1421 "? (no info available)"); 1422 } 1423 return (1); 1424 } 1425 if (path && *path) { 1426 statfs(path, &stbuf); 1427 vn->vn_mntdir = strdup(stbuf.f_mntonname); 1428 } else 1429 vn->vn_mntdir = strdup("-"); 1430 vn->vn_dev = rdev; 1431 if (vntype == PS_FST_VTYPE_VBLK) { 1432 name = devname(rdev, S_IFBLK); 1433 if (name != NULL) 1434 strlcpy(vn->vn_devname, name, 1435 sizeof(vn->vn_devname)); 1436 } else if (vntype == PS_FST_VTYPE_VCHR) { 1437 name = devname(vn->vn_dev, S_IFCHR); 1438 if (name != NULL) 1439 strlcpy(vn->vn_devname, name, 1440 sizeof(vn->vn_devname)); 1441 } 1442 vn->vn_fsid = fsid; 1443 vn->vn_fileid = fileid; 1444 vn->vn_size = size; 1445 vn->vn_mode = mode; 1446 return (0); 1447 } 1448 1449 int 1450 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, 1451 struct sockstat *sock, char *errbuf) 1452 { 1453 1454 assert(sock); 1455 if (procstat->type == PROCSTAT_KVM) { 1456 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, 1457 errbuf)); 1458 } else if (procstat->type == PROCSTAT_SYSCTL || 1459 procstat->type == PROCSTAT_CORE) { 1460 return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); 1461 } else { 1462 warnx("unknown access method: %d", procstat->type); 1463 if (errbuf != NULL) 1464 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1465 return (1); 1466 } 1467 } 1468 1469 static int 1470 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 1471 struct sockstat *sock, char *errbuf) 1472 { 1473 struct domain dom; 1474 struct inpcb inpcb; 1475 struct protosw proto; 1476 struct socket s; 1477 struct unpcb unpcb; 1478 ssize_t len; 1479 void *so; 1480 1481 assert(kd); 1482 assert(sock); 1483 assert(fst); 1484 bzero(sock, sizeof(*sock)); 1485 so = fst->fs_typedep; 1486 if (so == NULL) 1487 goto fail; 1488 sock->so_addr = (uintptr_t)so; 1489 /* fill in socket */ 1490 if (!kvm_read_all(kd, (unsigned long)so, &s, 1491 sizeof(struct socket))) { 1492 warnx("can't read sock at %p", (void *)so); 1493 goto fail; 1494 } 1495 /* fill in protosw entry */ 1496 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, 1497 sizeof(struct protosw))) { 1498 warnx("can't read protosw at %p", (void *)s.so_proto); 1499 goto fail; 1500 } 1501 /* fill in domain */ 1502 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, 1503 sizeof(struct domain))) { 1504 warnx("can't read domain at %p", 1505 (void *)proto.pr_domain); 1506 goto fail; 1507 } 1508 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, 1509 sizeof(sock->dname) - 1)) < 0) { 1510 warnx("can't read domain name at %p", (void *)dom.dom_name); 1511 sock->dname[0] = '\0'; 1512 } 1513 else 1514 sock->dname[len] = '\0'; 1515 1516 /* 1517 * Fill in known data. 1518 */ 1519 sock->type = s.so_type; 1520 sock->proto = proto.pr_protocol; 1521 sock->dom_family = dom.dom_family; 1522 sock->so_pcb = (uintptr_t)s.so_pcb; 1523 1524 /* 1525 * Protocol specific data. 1526 */ 1527 switch(dom.dom_family) { 1528 case AF_INET: 1529 case AF_INET6: 1530 if (proto.pr_protocol == IPPROTO_TCP) { 1531 if (s.so_pcb) { 1532 if (kvm_read(kd, (u_long)s.so_pcb, 1533 (char *)&inpcb, sizeof(struct inpcb)) 1534 != sizeof(struct inpcb)) { 1535 warnx("can't read inpcb at %p", 1536 (void *)s.so_pcb); 1537 } else 1538 sock->inp_ppcb = 1539 (uintptr_t)inpcb.inp_ppcb; 1540 sock->sendq = s.so_snd.sb_ccc; 1541 sock->recvq = s.so_rcv.sb_ccc; 1542 } 1543 } 1544 break; 1545 case AF_UNIX: 1546 if (s.so_pcb) { 1547 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, 1548 sizeof(struct unpcb)) != sizeof(struct unpcb)){ 1549 warnx("can't read unpcb at %p", 1550 (void *)s.so_pcb); 1551 } else if (unpcb.unp_conn) { 1552 sock->so_rcv_sb_state = s.so_rcv.sb_state; 1553 sock->so_snd_sb_state = s.so_snd.sb_state; 1554 sock->unp_conn = (uintptr_t)unpcb.unp_conn; 1555 sock->sendq = s.so_snd.sb_ccc; 1556 sock->recvq = s.so_rcv.sb_ccc; 1557 } 1558 } 1559 break; 1560 default: 1561 break; 1562 } 1563 return (0); 1564 1565 fail: 1566 if (errbuf != NULL) 1567 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1568 return (1); 1569 } 1570 1571 static int 1572 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, 1573 char *errbuf __unused) 1574 { 1575 struct kinfo_file *kif; 1576 1577 assert(sock); 1578 assert(fst); 1579 bzero(sock, sizeof(*sock)); 1580 kif = fst->fs_typedep; 1581 if (kif == NULL) 1582 return (0); 1583 1584 /* 1585 * Fill in known data. 1586 */ 1587 sock->type = kif->kf_sock_type; 1588 sock->proto = kif->kf_sock_protocol; 1589 sock->dom_family = kif->kf_sock_domain; 1590 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; 1591 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); 1592 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local, 1593 kif->kf_un.kf_sock.kf_sa_local.ss_len); 1594 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer, 1595 kif->kf_un.kf_sock.kf_sa_peer.ss_len); 1596 1597 /* 1598 * Protocol specific data. 1599 */ 1600 switch(sock->dom_family) { 1601 case AF_INET: 1602 case AF_INET6: 1603 if (sock->proto == IPPROTO_TCP) { 1604 sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb; 1605 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1606 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1607 } 1608 break; 1609 case AF_UNIX: 1610 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { 1611 sock->so_rcv_sb_state = 1612 kif->kf_un.kf_sock.kf_sock_rcv_sb_state; 1613 sock->so_snd_sb_state = 1614 kif->kf_un.kf_sock.kf_sock_snd_sb_state; 1615 sock->unp_conn = 1616 kif->kf_un.kf_sock.kf_sock_unpconn; 1617 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1618 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1619 } 1620 break; 1621 default: 1622 break; 1623 } 1624 return (0); 1625 } 1626 1627 /* 1628 * Descriptor flags to filestat translation. 1629 */ 1630 static int 1631 to_filestat_flags(int flags) 1632 { 1633 static struct { 1634 int flag; 1635 int fst_flag; 1636 } fstflags[] = { 1637 { FREAD, PS_FST_FFLAG_READ }, 1638 { FWRITE, PS_FST_FFLAG_WRITE }, 1639 { O_APPEND, PS_FST_FFLAG_APPEND }, 1640 { O_ASYNC, PS_FST_FFLAG_ASYNC }, 1641 { O_CREAT, PS_FST_FFLAG_CREAT }, 1642 { O_DIRECT, PS_FST_FFLAG_DIRECT }, 1643 { O_EXCL, PS_FST_FFLAG_EXCL }, 1644 { O_EXEC, PS_FST_FFLAG_EXEC }, 1645 { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, 1646 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 1647 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 1648 { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, 1649 { O_SYNC, PS_FST_FFLAG_SYNC }, 1650 { O_TRUNC, PS_FST_FFLAG_TRUNC } 1651 }; 1652 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) 1653 int fst_flags; 1654 unsigned int i; 1655 1656 fst_flags = 0; 1657 for (i = 0; i < NFSTFLAGS; i++) 1658 if (flags & fstflags[i].flag) 1659 fst_flags |= fstflags[i].fst_flag; 1660 return (fst_flags); 1661 } 1662 1663 /* 1664 * Vnode type to filestate translation. 1665 */ 1666 static int 1667 vntype2psfsttype(int type) 1668 { 1669 static struct { 1670 int vtype; 1671 int fst_vtype; 1672 } vt2fst[] = { 1673 { VBAD, PS_FST_VTYPE_VBAD }, 1674 { VBLK, PS_FST_VTYPE_VBLK }, 1675 { VCHR, PS_FST_VTYPE_VCHR }, 1676 { VDIR, PS_FST_VTYPE_VDIR }, 1677 { VFIFO, PS_FST_VTYPE_VFIFO }, 1678 { VLNK, PS_FST_VTYPE_VLNK }, 1679 { VNON, PS_FST_VTYPE_VNON }, 1680 { VREG, PS_FST_VTYPE_VREG }, 1681 { VSOCK, PS_FST_VTYPE_VSOCK } 1682 }; 1683 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) 1684 unsigned int i, fst_type; 1685 1686 fst_type = PS_FST_VTYPE_UNKNOWN; 1687 for (i = 0; i < NVFTYPES; i++) { 1688 if (type == vt2fst[i].vtype) { 1689 fst_type = vt2fst[i].fst_vtype; 1690 break; 1691 } 1692 } 1693 return (fst_type); 1694 } 1695 1696 static char * 1697 getmnton(kvm_t *kd, struct mount *m) 1698 { 1699 struct mount mnt; 1700 static struct mtab { 1701 struct mtab *next; 1702 struct mount *m; 1703 char mntonname[MNAMELEN + 1]; 1704 } *mhead = NULL; 1705 struct mtab *mt; 1706 1707 for (mt = mhead; mt != NULL; mt = mt->next) 1708 if (m == mt->m) 1709 return (mt->mntonname); 1710 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { 1711 warnx("can't read mount table at %p", (void *)m); 1712 return (NULL); 1713 } 1714 if ((mt = malloc(sizeof (struct mtab))) == NULL) 1715 err(1, NULL); 1716 mt->m = m; 1717 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); 1718 mt->mntonname[MNAMELEN] = '\0'; 1719 mt->next = mhead; 1720 mhead = mt; 1721 return (mt->mntonname); 1722 } 1723 1724 /* 1725 * Auxiliary structures and functions to get process environment or 1726 * command line arguments. 1727 */ 1728 struct argvec { 1729 char *buf; 1730 size_t bufsize; 1731 char **argv; 1732 size_t argc; 1733 }; 1734 1735 static struct argvec * 1736 argvec_alloc(size_t bufsize) 1737 { 1738 struct argvec *av; 1739 1740 av = malloc(sizeof(*av)); 1741 if (av == NULL) 1742 return (NULL); 1743 av->bufsize = bufsize; 1744 av->buf = malloc(av->bufsize); 1745 if (av->buf == NULL) { 1746 free(av); 1747 return (NULL); 1748 } 1749 av->argc = 32; 1750 av->argv = malloc(sizeof(char *) * av->argc); 1751 if (av->argv == NULL) { 1752 free(av->buf); 1753 free(av); 1754 return (NULL); 1755 } 1756 return av; 1757 } 1758 1759 static void 1760 argvec_free(struct argvec * av) 1761 { 1762 1763 free(av->argv); 1764 free(av->buf); 1765 free(av); 1766 } 1767 1768 static char ** 1769 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) 1770 { 1771 int error, name[4], argc, i; 1772 struct argvec *av, **avp; 1773 enum psc_type type; 1774 size_t len; 1775 char *p, **argv; 1776 1777 assert(procstat); 1778 assert(kp); 1779 if (procstat->type == PROCSTAT_KVM) { 1780 warnx("can't use kvm access method"); 1781 return (NULL); 1782 } 1783 if (procstat->type != PROCSTAT_SYSCTL && 1784 procstat->type != PROCSTAT_CORE) { 1785 warnx("unknown access method: %d", procstat->type); 1786 return (NULL); 1787 } 1788 1789 if (nchr == 0 || nchr > ARG_MAX) 1790 nchr = ARG_MAX; 1791 1792 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); 1793 av = *avp; 1794 1795 if (av == NULL) 1796 { 1797 av = argvec_alloc(nchr); 1798 if (av == NULL) 1799 { 1800 warn("malloc(%zu)", nchr); 1801 return (NULL); 1802 } 1803 *avp = av; 1804 } else if (av->bufsize < nchr) { 1805 av->buf = reallocf(av->buf, nchr); 1806 if (av->buf == NULL) { 1807 warn("malloc(%zu)", nchr); 1808 return (NULL); 1809 } 1810 } 1811 if (procstat->type == PROCSTAT_SYSCTL) { 1812 name[0] = CTL_KERN; 1813 name[1] = KERN_PROC; 1814 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 1815 name[3] = kp->ki_pid; 1816 len = nchr; 1817 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0); 1818 if (error != 0 && errno != ESRCH && errno != EPERM) 1819 warn("sysctl(kern.proc.%s)", env ? "env" : "args"); 1820 if (error != 0 || len == 0) 1821 return (NULL); 1822 } else /* procstat->type == PROCSTAT_CORE */ { 1823 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; 1824 len = nchr; 1825 if (procstat_core_get(procstat->core, type, av->buf, &len) 1826 == NULL) { 1827 return (NULL); 1828 } 1829 } 1830 1831 argv = av->argv; 1832 argc = av->argc; 1833 i = 0; 1834 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { 1835 argv[i++] = p; 1836 if (i < argc) 1837 continue; 1838 /* Grow argv. */ 1839 argc += argc; 1840 argv = realloc(argv, sizeof(char *) * argc); 1841 if (argv == NULL) { 1842 warn("malloc(%zu)", sizeof(char *) * argc); 1843 return (NULL); 1844 } 1845 av->argv = argv; 1846 av->argc = argc; 1847 } 1848 argv[i] = NULL; 1849 1850 return (argv); 1851 } 1852 1853 /* 1854 * Return process command line arguments. 1855 */ 1856 char ** 1857 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1858 { 1859 1860 return (getargv(procstat, p, nchr, 0)); 1861 } 1862 1863 /* 1864 * Free the buffer allocated by procstat_getargv(). 1865 */ 1866 void 1867 procstat_freeargv(struct procstat *procstat) 1868 { 1869 1870 if (procstat->argv != NULL) { 1871 argvec_free(procstat->argv); 1872 procstat->argv = NULL; 1873 } 1874 } 1875 1876 /* 1877 * Return process environment. 1878 */ 1879 char ** 1880 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1881 { 1882 1883 return (getargv(procstat, p, nchr, 1)); 1884 } 1885 1886 /* 1887 * Free the buffer allocated by procstat_getenvv(). 1888 */ 1889 void 1890 procstat_freeenvv(struct procstat *procstat) 1891 { 1892 if (procstat->envv != NULL) { 1893 argvec_free(procstat->envv); 1894 procstat->envv = NULL; 1895 } 1896 } 1897 1898 static struct kinfo_vmentry * 1899 kinfo_getvmmap_core(struct procstat_core *core, int *cntp) 1900 { 1901 int cnt; 1902 size_t len; 1903 char *buf, *bp, *eb; 1904 struct kinfo_vmentry *kiv, *kp, *kv; 1905 1906 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); 1907 if (buf == NULL) 1908 return (NULL); 1909 1910 /* 1911 * XXXMG: The code below is just copy&past from libutil. 1912 * The code duplication can be avoided if libutil 1913 * is extended to provide something like: 1914 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, 1915 * size_t len, int *cntp); 1916 */ 1917 1918 /* Pass 1: count items */ 1919 cnt = 0; 1920 bp = buf; 1921 eb = buf + len; 1922 while (bp < eb) { 1923 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1924 if (kv->kve_structsize == 0) 1925 break; 1926 bp += kv->kve_structsize; 1927 cnt++; 1928 } 1929 1930 kiv = calloc(cnt, sizeof(*kiv)); 1931 if (kiv == NULL) { 1932 free(buf); 1933 return (NULL); 1934 } 1935 bp = buf; 1936 eb = buf + len; 1937 kp = kiv; 1938 /* Pass 2: unpack */ 1939 while (bp < eb) { 1940 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1941 if (kv->kve_structsize == 0) 1942 break; 1943 /* Copy/expand into pre-zeroed buffer */ 1944 memcpy(kp, kv, kv->kve_structsize); 1945 /* Advance to next packed record */ 1946 bp += kv->kve_structsize; 1947 /* Set field size to fixed length, advance */ 1948 kp->kve_structsize = sizeof(*kp); 1949 kp++; 1950 } 1951 free(buf); 1952 *cntp = cnt; 1953 return (kiv); /* Caller must free() return value */ 1954 } 1955 1956 struct kinfo_vmentry * 1957 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, 1958 unsigned int *cntp) 1959 { 1960 1961 switch(procstat->type) { 1962 case PROCSTAT_KVM: 1963 warnx("kvm method is not supported"); 1964 return (NULL); 1965 case PROCSTAT_SYSCTL: 1966 return (kinfo_getvmmap(kp->ki_pid, cntp)); 1967 case PROCSTAT_CORE: 1968 return (kinfo_getvmmap_core(procstat->core, cntp)); 1969 default: 1970 warnx("unknown access method: %d", procstat->type); 1971 return (NULL); 1972 } 1973 } 1974 1975 void 1976 procstat_freevmmap(struct procstat *procstat __unused, 1977 struct kinfo_vmentry *vmmap) 1978 { 1979 1980 free(vmmap); 1981 } 1982 1983 static gid_t * 1984 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) 1985 { 1986 struct proc proc; 1987 struct ucred ucred; 1988 gid_t *groups; 1989 size_t len; 1990 1991 assert(kd != NULL); 1992 assert(kp != NULL); 1993 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 1994 sizeof(proc))) { 1995 warnx("can't read proc struct at %p for pid %d", 1996 kp->ki_paddr, kp->ki_pid); 1997 return (NULL); 1998 } 1999 if (proc.p_ucred == NOCRED) 2000 return (NULL); 2001 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, 2002 sizeof(ucred))) { 2003 warnx("can't read ucred struct at %p for pid %d", 2004 proc.p_ucred, kp->ki_pid); 2005 return (NULL); 2006 } 2007 len = ucred.cr_ngroups * sizeof(gid_t); 2008 groups = malloc(len); 2009 if (groups == NULL) { 2010 warn("malloc(%zu)", len); 2011 return (NULL); 2012 } 2013 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { 2014 warnx("can't read groups at %p for pid %d", 2015 ucred.cr_groups, kp->ki_pid); 2016 free(groups); 2017 return (NULL); 2018 } 2019 *cntp = ucred.cr_ngroups; 2020 return (groups); 2021 } 2022 2023 static gid_t * 2024 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) 2025 { 2026 int mib[4]; 2027 size_t len; 2028 gid_t *groups; 2029 2030 mib[0] = CTL_KERN; 2031 mib[1] = KERN_PROC; 2032 mib[2] = KERN_PROC_GROUPS; 2033 mib[3] = pid; 2034 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); 2035 groups = malloc(len); 2036 if (groups == NULL) { 2037 warn("malloc(%zu)", len); 2038 return (NULL); 2039 } 2040 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) { 2041 warn("sysctl: kern.proc.groups: %d", pid); 2042 free(groups); 2043 return (NULL); 2044 } 2045 *cntp = len / sizeof(gid_t); 2046 return (groups); 2047 } 2048 2049 static gid_t * 2050 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) 2051 { 2052 size_t len; 2053 gid_t *groups; 2054 2055 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); 2056 if (groups == NULL) 2057 return (NULL); 2058 *cntp = len / sizeof(gid_t); 2059 return (groups); 2060 } 2061 2062 gid_t * 2063 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, 2064 unsigned int *cntp) 2065 { 2066 switch(procstat->type) { 2067 case PROCSTAT_KVM: 2068 return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); 2069 case PROCSTAT_SYSCTL: 2070 return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); 2071 case PROCSTAT_CORE: 2072 return (procstat_getgroups_core(procstat->core, cntp)); 2073 default: 2074 warnx("unknown access method: %d", procstat->type); 2075 return (NULL); 2076 } 2077 } 2078 2079 void 2080 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) 2081 { 2082 2083 free(groups); 2084 } 2085 2086 static int 2087 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) 2088 { 2089 struct filedesc fd; 2090 2091 assert(kd != NULL); 2092 assert(kp != NULL); 2093 if (kp->ki_fd == NULL) 2094 return (-1); 2095 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) { 2096 warnx("can't read filedesc at %p for pid %d", kp->ki_fd, 2097 kp->ki_pid); 2098 return (-1); 2099 } 2100 *maskp = fd.fd_cmask; 2101 return (0); 2102 } 2103 2104 static int 2105 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) 2106 { 2107 int error; 2108 int mib[4]; 2109 size_t len; 2110 2111 mib[0] = CTL_KERN; 2112 mib[1] = KERN_PROC; 2113 mib[2] = KERN_PROC_UMASK; 2114 mib[3] = pid; 2115 len = sizeof(*maskp); 2116 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0); 2117 if (error != 0 && errno != ESRCH && errno != EPERM) 2118 warn("sysctl: kern.proc.umask: %d", pid); 2119 return (error); 2120 } 2121 2122 static int 2123 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) 2124 { 2125 size_t len; 2126 unsigned short *buf; 2127 2128 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); 2129 if (buf == NULL) 2130 return (-1); 2131 if (len < sizeof(*maskp)) { 2132 free(buf); 2133 return (-1); 2134 } 2135 *maskp = *buf; 2136 free(buf); 2137 return (0); 2138 } 2139 2140 int 2141 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, 2142 unsigned short *maskp) 2143 { 2144 switch(procstat->type) { 2145 case PROCSTAT_KVM: 2146 return (procstat_getumask_kvm(procstat->kd, kp, maskp)); 2147 case PROCSTAT_SYSCTL: 2148 return (procstat_getumask_sysctl(kp->ki_pid, maskp)); 2149 case PROCSTAT_CORE: 2150 return (procstat_getumask_core(procstat->core, maskp)); 2151 default: 2152 warnx("unknown access method: %d", procstat->type); 2153 return (-1); 2154 } 2155 } 2156 2157 static int 2158 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, 2159 struct rlimit* rlimit) 2160 { 2161 struct proc proc; 2162 unsigned long offset; 2163 2164 assert(kd != NULL); 2165 assert(kp != NULL); 2166 assert(which >= 0 && which < RLIM_NLIMITS); 2167 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2168 sizeof(proc))) { 2169 warnx("can't read proc struct at %p for pid %d", 2170 kp->ki_paddr, kp->ki_pid); 2171 return (-1); 2172 } 2173 if (proc.p_limit == NULL) 2174 return (-1); 2175 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; 2176 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { 2177 warnx("can't read rlimit struct at %p for pid %d", 2178 (void *)offset, kp->ki_pid); 2179 return (-1); 2180 } 2181 return (0); 2182 } 2183 2184 static int 2185 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) 2186 { 2187 int error, name[5]; 2188 size_t len; 2189 2190 name[0] = CTL_KERN; 2191 name[1] = KERN_PROC; 2192 name[2] = KERN_PROC_RLIMIT; 2193 name[3] = pid; 2194 name[4] = which; 2195 len = sizeof(struct rlimit); 2196 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0); 2197 if (error < 0 && errno != ESRCH) { 2198 warn("sysctl: kern.proc.rlimit: %d", pid); 2199 return (-1); 2200 } 2201 if (error < 0 || len != sizeof(struct rlimit)) 2202 return (-1); 2203 return (0); 2204 } 2205 2206 static int 2207 procstat_getrlimit_core(struct procstat_core *core, int which, 2208 struct rlimit* rlimit) 2209 { 2210 size_t len; 2211 struct rlimit* rlimits; 2212 2213 if (which < 0 || which >= RLIM_NLIMITS) { 2214 errno = EINVAL; 2215 warn("getrlimit: which"); 2216 return (-1); 2217 } 2218 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); 2219 if (rlimits == NULL) 2220 return (-1); 2221 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { 2222 free(rlimits); 2223 return (-1); 2224 } 2225 *rlimit = rlimits[which]; 2226 free(rlimits); 2227 return (0); 2228 } 2229 2230 int 2231 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, 2232 struct rlimit* rlimit) 2233 { 2234 switch(procstat->type) { 2235 case PROCSTAT_KVM: 2236 return (procstat_getrlimit_kvm(procstat->kd, kp, which, 2237 rlimit)); 2238 case PROCSTAT_SYSCTL: 2239 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); 2240 case PROCSTAT_CORE: 2241 return (procstat_getrlimit_core(procstat->core, which, rlimit)); 2242 default: 2243 warnx("unknown access method: %d", procstat->type); 2244 return (-1); 2245 } 2246 } 2247 2248 static int 2249 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) 2250 { 2251 int error, name[4]; 2252 size_t len; 2253 2254 name[0] = CTL_KERN; 2255 name[1] = KERN_PROC; 2256 name[2] = KERN_PROC_PATHNAME; 2257 name[3] = pid; 2258 len = maxlen; 2259 error = sysctl(name, nitems(name), pathname, &len, NULL, 0); 2260 if (error != 0 && errno != ESRCH) 2261 warn("sysctl: kern.proc.pathname: %d", pid); 2262 if (len == 0) 2263 pathname[0] = '\0'; 2264 return (error); 2265 } 2266 2267 static int 2268 procstat_getpathname_core(struct procstat_core *core, char *pathname, 2269 size_t maxlen) 2270 { 2271 struct kinfo_file *files; 2272 int cnt, i, result; 2273 2274 files = kinfo_getfile_core(core, &cnt); 2275 if (files == NULL) 2276 return (-1); 2277 result = -1; 2278 for (i = 0; i < cnt; i++) { 2279 if (files[i].kf_fd != KF_FD_TYPE_TEXT) 2280 continue; 2281 strncpy(pathname, files[i].kf_path, maxlen); 2282 result = 0; 2283 break; 2284 } 2285 free(files); 2286 return (result); 2287 } 2288 2289 int 2290 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, 2291 char *pathname, size_t maxlen) 2292 { 2293 switch(procstat->type) { 2294 case PROCSTAT_KVM: 2295 /* XXX: Return empty string. */ 2296 if (maxlen > 0) 2297 pathname[0] = '\0'; 2298 return (0); 2299 case PROCSTAT_SYSCTL: 2300 return (procstat_getpathname_sysctl(kp->ki_pid, pathname, 2301 maxlen)); 2302 case PROCSTAT_CORE: 2303 return (procstat_getpathname_core(procstat->core, pathname, 2304 maxlen)); 2305 default: 2306 warnx("unknown access method: %d", procstat->type); 2307 return (-1); 2308 } 2309 } 2310 2311 static int 2312 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) 2313 { 2314 struct proc proc; 2315 2316 assert(kd != NULL); 2317 assert(kp != NULL); 2318 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2319 sizeof(proc))) { 2320 warnx("can't read proc struct at %p for pid %d", 2321 kp->ki_paddr, kp->ki_pid); 2322 return (-1); 2323 } 2324 *osrelp = proc.p_osrel; 2325 return (0); 2326 } 2327 2328 static int 2329 procstat_getosrel_sysctl(pid_t pid, int *osrelp) 2330 { 2331 int error, name[4]; 2332 size_t len; 2333 2334 name[0] = CTL_KERN; 2335 name[1] = KERN_PROC; 2336 name[2] = KERN_PROC_OSREL; 2337 name[3] = pid; 2338 len = sizeof(*osrelp); 2339 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0); 2340 if (error != 0 && errno != ESRCH) 2341 warn("sysctl: kern.proc.osrel: %d", pid); 2342 return (error); 2343 } 2344 2345 static int 2346 procstat_getosrel_core(struct procstat_core *core, int *osrelp) 2347 { 2348 size_t len; 2349 int *buf; 2350 2351 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); 2352 if (buf == NULL) 2353 return (-1); 2354 if (len < sizeof(*osrelp)) { 2355 free(buf); 2356 return (-1); 2357 } 2358 *osrelp = *buf; 2359 free(buf); 2360 return (0); 2361 } 2362 2363 int 2364 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) 2365 { 2366 switch(procstat->type) { 2367 case PROCSTAT_KVM: 2368 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); 2369 case PROCSTAT_SYSCTL: 2370 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); 2371 case PROCSTAT_CORE: 2372 return (procstat_getosrel_core(procstat->core, osrelp)); 2373 default: 2374 warnx("unknown access method: %d", procstat->type); 2375 return (-1); 2376 } 2377 } 2378 2379 #define PROC_AUXV_MAX 256 2380 2381 #if __ELF_WORD_SIZE == 64 2382 static const char *elf32_sv_names[] = { 2383 "Linux ELF32", 2384 "FreeBSD ELF32", 2385 }; 2386 2387 static int 2388 is_elf32_sysctl(pid_t pid) 2389 { 2390 int error, name[4]; 2391 size_t len, i; 2392 static char sv_name[256]; 2393 2394 name[0] = CTL_KERN; 2395 name[1] = KERN_PROC; 2396 name[2] = KERN_PROC_SV_NAME; 2397 name[3] = pid; 2398 len = sizeof(sv_name); 2399 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0); 2400 if (error != 0 || len == 0) 2401 return (0); 2402 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { 2403 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) 2404 return (1); 2405 } 2406 return (0); 2407 } 2408 2409 static Elf_Auxinfo * 2410 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) 2411 { 2412 Elf_Auxinfo *auxv; 2413 Elf32_Auxinfo *auxv32; 2414 void *ptr; 2415 size_t len; 2416 unsigned int i, count; 2417 int name[4]; 2418 2419 name[0] = CTL_KERN; 2420 name[1] = KERN_PROC; 2421 name[2] = KERN_PROC_AUXV; 2422 name[3] = pid; 2423 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); 2424 auxv = NULL; 2425 auxv32 = malloc(len); 2426 if (auxv32 == NULL) { 2427 warn("malloc(%zu)", len); 2428 goto out; 2429 } 2430 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) { 2431 if (errno != ESRCH && errno != EPERM) 2432 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2433 goto out; 2434 } 2435 count = len / sizeof(Elf_Auxinfo); 2436 auxv = malloc(count * sizeof(Elf_Auxinfo)); 2437 if (auxv == NULL) { 2438 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); 2439 goto out; 2440 } 2441 for (i = 0; i < count; i++) { 2442 /* 2443 * XXX: We expect that values for a_type on a 32-bit platform 2444 * are directly mapped to values on 64-bit one, which is not 2445 * necessarily true. 2446 */ 2447 auxv[i].a_type = auxv32[i].a_type; 2448 ptr = &auxv32[i].a_un; 2449 auxv[i].a_un.a_val = *((uint32_t *)ptr); 2450 } 2451 *cntp = count; 2452 out: 2453 free(auxv32); 2454 return (auxv); 2455 } 2456 #endif /* __ELF_WORD_SIZE == 64 */ 2457 2458 static Elf_Auxinfo * 2459 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) 2460 { 2461 Elf_Auxinfo *auxv; 2462 int name[4]; 2463 size_t len; 2464 2465 #if __ELF_WORD_SIZE == 64 2466 if (is_elf32_sysctl(pid)) 2467 return (procstat_getauxv32_sysctl(pid, cntp)); 2468 #endif 2469 name[0] = CTL_KERN; 2470 name[1] = KERN_PROC; 2471 name[2] = KERN_PROC_AUXV; 2472 name[3] = pid; 2473 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); 2474 auxv = malloc(len); 2475 if (auxv == NULL) { 2476 warn("malloc(%zu)", len); 2477 return (NULL); 2478 } 2479 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) { 2480 if (errno != ESRCH && errno != EPERM) 2481 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2482 free(auxv); 2483 return (NULL); 2484 } 2485 *cntp = len / sizeof(Elf_Auxinfo); 2486 return (auxv); 2487 } 2488 2489 static Elf_Auxinfo * 2490 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) 2491 { 2492 Elf_Auxinfo *auxv; 2493 size_t len; 2494 2495 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); 2496 if (auxv == NULL) 2497 return (NULL); 2498 *cntp = len / sizeof(Elf_Auxinfo); 2499 return (auxv); 2500 } 2501 2502 Elf_Auxinfo * 2503 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, 2504 unsigned int *cntp) 2505 { 2506 switch(procstat->type) { 2507 case PROCSTAT_KVM: 2508 warnx("kvm method is not supported"); 2509 return (NULL); 2510 case PROCSTAT_SYSCTL: 2511 return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); 2512 case PROCSTAT_CORE: 2513 return (procstat_getauxv_core(procstat->core, cntp)); 2514 default: 2515 warnx("unknown access method: %d", procstat->type); 2516 return (NULL); 2517 } 2518 } 2519 2520 void 2521 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) 2522 { 2523 2524 free(auxv); 2525 } 2526 2527 static struct ptrace_lwpinfo * 2528 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp) 2529 { 2530 void *buf; 2531 struct ptrace_lwpinfo *pl; 2532 unsigned int cnt; 2533 size_t len; 2534 2535 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO); 2536 if (cnt == 0) 2537 return (NULL); 2538 2539 len = cnt * sizeof(*pl); 2540 buf = calloc(1, len); 2541 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len); 2542 if (pl == NULL) { 2543 free(buf); 2544 return (NULL); 2545 } 2546 *cntp = len / sizeof(*pl); 2547 return (pl); 2548 } 2549 2550 struct ptrace_lwpinfo * 2551 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp) 2552 { 2553 switch (procstat->type) { 2554 case PROCSTAT_KVM: 2555 warnx("kvm method is not supported"); 2556 return (NULL); 2557 case PROCSTAT_SYSCTL: 2558 warnx("sysctl method is not supported"); 2559 return (NULL); 2560 case PROCSTAT_CORE: 2561 return (procstat_getptlwpinfo_core(procstat->core, cntp)); 2562 default: 2563 warnx("unknown access method: %d", procstat->type); 2564 return (NULL); 2565 } 2566 } 2567 2568 void 2569 procstat_freeptlwpinfo(struct procstat *procstat __unused, 2570 struct ptrace_lwpinfo *pl) 2571 { 2572 free(pl); 2573 } 2574 2575 static struct kinfo_kstack * 2576 procstat_getkstack_sysctl(pid_t pid, int *cntp) 2577 { 2578 struct kinfo_kstack *kkstp; 2579 int error, name[4]; 2580 size_t len; 2581 2582 name[0] = CTL_KERN; 2583 name[1] = KERN_PROC; 2584 name[2] = KERN_PROC_KSTACK; 2585 name[3] = pid; 2586 2587 len = 0; 2588 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 2589 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { 2590 warn("sysctl: kern.proc.kstack: %d", pid); 2591 return (NULL); 2592 } 2593 if (error == -1 && errno == ENOENT) { 2594 warnx("sysctl: kern.proc.kstack unavailable" 2595 " (options DDB or options STACK required in kernel)"); 2596 return (NULL); 2597 } 2598 if (error == -1) 2599 return (NULL); 2600 kkstp = malloc(len); 2601 if (kkstp == NULL) { 2602 warn("malloc(%zu)", len); 2603 return (NULL); 2604 } 2605 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1) { 2606 warn("sysctl: kern.proc.pid: %d", pid); 2607 free(kkstp); 2608 return (NULL); 2609 } 2610 *cntp = len / sizeof(*kkstp); 2611 2612 return (kkstp); 2613 } 2614 2615 struct kinfo_kstack * 2616 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, 2617 unsigned int *cntp) 2618 { 2619 switch(procstat->type) { 2620 case PROCSTAT_KVM: 2621 warnx("kvm method is not supported"); 2622 return (NULL); 2623 case PROCSTAT_SYSCTL: 2624 return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); 2625 case PROCSTAT_CORE: 2626 warnx("core method is not supported"); 2627 return (NULL); 2628 default: 2629 warnx("unknown access method: %d", procstat->type); 2630 return (NULL); 2631 } 2632 } 2633 2634 void 2635 procstat_freekstack(struct procstat *procstat __unused, 2636 struct kinfo_kstack *kkstp) 2637 { 2638 2639 free(kkstp); 2640 } 2641